QQ登录

只需一步,快速开始

登录 | 注册 | 找回密码

三维网

 找回密码
 注册

QQ登录

只需一步,快速开始

展开

通知     

查看: 3797|回复: 14
收起左侧

[已解决] 求助:三力平衡,求支反力

[复制链接]
发表于 2012-6-20 14:47:37 | 显示全部楼层 |阅读模式 来自: 中国上海

马上注册,结识高手,享用更多资源,轻松玩转三维网社区。

您需要 登录 才可以下载或查看,没有帐号?注册

x
请教各位高手:
2 v* ?" k0 u: e4 B& d, |" e8 S现遇到一个比较棘手的难题,三力平衡求支反力。就是不知道该怎么求,貌似解有无穷多种?还请高手赐教,不胜感激!
7 q! P' A7 F2 ~9 n4 _- `+ r- T. p: y0 a" ~. d. n5 B" L
2012-6-20 13-53-38.jpg
' i; b/ C; s" r8 Y5 x
% n$ {2 T! _9 [$ P" P) g" v6 S+ w4 B, u/ O* L3 S
就是一块板上有三个孔,在大孔处受到一个竖直向下的力,求两个小孔处的支反力。) N8 q/ @" `/ W% P
; h* B1 j% n& j; ~4 h7 P8 U# O
万分感激!
发表于 2012-6-20 16:03:50 | 显示全部楼层 来自: 中国河南郑州
本帖最后由 wwll13 于 2012-6-20 16:06 编辑
7 N: x! m: Y1 _$ O, o3 `4 e$ j8 }* t! k0 Y0 m$ w2 y
为什么会有穷多个解?按照平面力,水平竖直,然后列方程,力和力矩
* T5 [9 K; A( a& v你的条件不够,30的孔位置要确定,应该是中心?

评分

参与人数 1三维币 +2 收起 理由
plc + 2 技术讨论

查看全部评分

 楼主| 发表于 2012-6-20 16:14:28 | 显示全部楼层 来自: 中国上海
是的,两个小孔关于30孔水平方向对称。7 t$ J  @/ t5 B: a
我求解过了,求不出来。只能求出两个小孔的水平支反力及竖直支反力的和。具体两个竖直支反力到底是多少,求不出。可有好的办法啊?多谢!
发表于 2012-6-20 20:03:14 | 显示全部楼层 来自: 中国四川成都
这个平面受不平行的三力作用而处于平衡时,此三力的作用线必共面且汇交于一点。直径30(A)与两个直径20(B、C)的孔形成一个150、125、125的三角形、( J" d. N( w  @$ [, O' E
A点受力10000N  B、C两点受力必须与A受力作用线必共面且汇交于一点。就在三角形ABC的中心(D),即D的受力向上10000N,分布到B、C两点就是2500N

评分

参与人数 1三维币 +2 收起 理由
plc + 2 应助

查看全部评分

发表于 2012-6-20 20:36:38 | 显示全部楼层 来自: 中国广东东莞
是的,两个小孔关于30孔水平方向对称。
6 [% g0 V0 P$ p0 F& [/ u我求解过了,求不出来。只能求出两个小孔的水平支反力及竖直支反力的和。具体两个竖直支反力到底是多少,求不出。可有好的办法啊?多谢!
5 f  @' h. g  ]& k; B0 E0 |' G7 O5 vLeoZhangShang 发表于 2012-6-20 16:14 http://www.3dportal.cn/discuz/images/common/back.gif
' C8 P, J0 S: K0 z5 J7 i. `6 ?
用力偶平衡关系计算。两个小孔的X向受力大小相等方向相反;假设两个小孔的受的Y向力相等则等于0.5倍30直径处的力。

评分

参与人数 1三维币 +2 收起 理由
plc + 2 应助

查看全部评分

发表于 2012-6-21 10:12:59 | 显示全部楼层 来自: 中国浙江台州
这个平面受不平行的三力作用而处于平衡时,此三力的作用线必共面且汇交于一点。直径30(A)与两个直径20(B、C)的孔形成一个150、125、125的三角形、. s1 r' D. b& Y0 e& B2 a
A点受力10000N  B、C两点受力必须与A受力作用线必共面且汇交于 ...' O/ G1 O2 p0 t8 _9 R4 q
cnxiaomao 发表于 2012-6-20 20:03 http://www.3dportal.cn/discuz/images/common/back.gif

4 b: N: Q2 ^/ F交汇于下吧。
1.png

评分

参与人数 1三维币 +2 收起 理由
plc + 2 技术讨论

查看全部评分

发表于 2012-6-21 11:13:11 | 显示全部楼层 来自: 中国山西太原
三力构成等腰力三角形ABC,过A作BC的垂线交BC于D。利用力矩平衡方程可求出B点或C点的水平分力AD=6666.7N,作用于B、C的水平分力大小相等,方向相反。6 K3 I' A) S3 T% O' b
在直角三角形ABD中:BD=5000N,可求得支反力AB=BC=8333.3N,   方向如下图。
力三角形.jpg

评分

参与人数 1三维币 +2 收起 理由
plc + 2 技术讨论

查看全部评分

 楼主| 发表于 2012-6-21 14:14:18 | 显示全部楼层 来自: 中国上海
关键的问题是,汇交点一定在大孔中心吗?这个是根据什么确定的?我觉得只能确定在大孔受力线上,而不能确定具体的位置。
发表于 2012-6-22 09:09:30 | 显示全部楼层 来自: 中国山西太原
8# LeoZhangShang . A8 A4 t2 W; l. n) v
一般孔是通过穿在其中的销轴来受力,力作用在圆柱面的法向,是指向圆心的。' B( j$ Z( F( _. S1 v' E
现在是要求力三角形,作用于φ30孔中心的力已知,设X轴通过大圆圆心,作用于二个小孔的力的水平分力可用力矩平衡方程求出,此二分力大小相等、方向相反。因二小孔对称于过大孔中心的X轴,二小孔受的竖直分力的和等于大孔受的力(10000N),且二分力相等。按7楼的力三角形就可求出二小孔受的力的大小(8333.3N)。

评分

参与人数 1三维币 +2 收起 理由
plc + 2 技术讨论

查看全部评分

 楼主| 发表于 2012-7-4 14:01:36 | 显示全部楼层 来自: 中国上海
我指的是三力的汇交点不一定在大孔中心!
# \$ r/ j$ d, e" H* f  B, _* Y为什么一定在大孔中心呢?只能知道大孔处的力是在大孔中心。
, E/ e0 ^9 ~3 l, e7 p- l* c还是没有人能回答我的疑问啊!{:sad:}
 楼主| 发表于 2012-7-20 11:26:15 | 显示全部楼层 来自: 中国上海
没有高手能赐教?
发表于 2012-7-23 08:26:27 | 显示全部楼层 来自: 中国山西太原
LeoZhangShang 发表于 2012-7-4 14:01 static/image/common/back.gif" b' h0 z5 w% v/ O
我指的是三力的汇交点不一定在大孔中心!) b/ p& h! J7 ]" o
为什么一定在大孔中心呢?只能知道大孔处的力是在大孔中心。' g. a0 P3 P% n( [, q! `
还 ...

& K0 m; n$ Y; |$ f% U你的求助主题是三力平衡求支反力,三力平衡就可构成力三角形,三力可汇交于一点。通过已知条件,就可求出支反力的大小,就达到了目的。' I3 x/ M+ a4 z" A6 }$ p+ F, I
另外,既然力的作用点都在孔的中心,现在问一下楼主:为什么汇交点就不在孔中心呢?
发表于 2012-7-23 09:41:54 | 显示全部楼层 来自: 中国河南郑州
LeoZhangShang 发表于 2012-7-4 14:01 static/image/common/back.gif. k* l+ h/ N( H5 F& M/ m6 H- ?4 O3 y6 _
我指的是三力的汇交点不一定在大孔中心!
5 m. S! h( W) m& V; T6 a% t3 ~为什么一定在大孔中心呢?只能知道大孔处的力是在大孔中心。8 m3 @( K5 L- W0 D$ a7 y) _5 Q4 ^
还 ...

& B: D$ L- f4 X, i% h你不用管力的交汇点,a点xy方向,b点xy方向,c点x为0y为1,然后计算,最后合力你就知道在哪了.另外里的平衡再赌毒定义..
发表于 2012-7-24 10:58:14 | 显示全部楼层 来自: 中国河北保定
用倾覆力矩平衡的方法计算每个孔的一个分力,然后需要在竖直方向平衡,假定两个20孔受力均衡,每个受竖直向上的5000N,再计算合力即可。但实际使用时,20孔可能受力不均,甚至只有一个受力(间隙比较大,位置不准确)。此结果和SW计算一致。
 楼主| 发表于 2012-8-13 11:20:22 | 显示全部楼层 来自: 中国上海
只有楼上的回答,还算比较满意。我的疑问也正在于此,两个小孔处竖直方向的力的大小不能确定,只能知道在一个范围内变动。\(^o^)/~,也算有个结论了吧。
. K& r) Y# N9 [( |: O/ ]7 t. n; O5 r多谢各位的指教哈。
发表回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Licensed Copyright © 2016-2020 http://www.3dportal.cn/ All Rights Reserved 京 ICP备13008828号

小黑屋|手机版|Archiver|三维网 ( 京ICP备2023026364号-1 )

快速回复 返回顶部 返回列表