|
发表于 2010-9-26 19:58:02
|
显示全部楼层
来自: 中国山东济南
本帖最后由 qilupzh 于 2010-9-26 20:02 编辑 : _1 X3 j: j6 ]1 v A( @; x# i
5 [+ t# g6 V3 [, d8 q4 n《粉体力学与工程》:
6 r7 ~3 a1 e3 P作者:谢洪勇) q( K, @2 T% ^, }/ s2 d5 z
出版:化学工业出版社 2003年1 Z& r( ~$ V: K) a
0 W7 g$ j& o& ~+ x0 Q; y% g) \内容摘要本书介绍粉体工程的基础理论及其在粉体操作单元中的应用,包括颗粒物性,粉体物性,粉体静力学,粉体动力学,制粉,混合操作的过程与设备等内容。
3 p+ H9 {1 U' |过程装备与控制工程丛书
' D3 [0 A! w; D9 R9 Q6 o/ ?) Z2 w5 c
全文目录目录: j" K: e( L3 D/ y
1颗粒物性3 q0 X$ ?+ |3 k( G* S
1.1颗粒的尺寸与尺寸分布) z) R7 E+ N; U! z; ~
1.1.1颗粒尺寸
$ @: P: c, H! H' _# w- v" P# l o1.1.2颗粒的尺寸分布8 d7 x9 O/ x2 i9 ^$ C0 h; D1 U
1.1.3平均颗粒尺寸7 P, b) S; h: n- q% b+ h' h
1.1.4尺寸分布宽度; @3 E4 k2 X4 W1 O7 r9 J! F
1.1.5颗粒密度和多孔率9 M; F" v% F2 e
1.2颗粒的形状
- Y' J; ?2 c0 y7 |1.2.1Heywood形状系数
* n+ q5 f( p2 l6 W( v( e- r! Z1.2.2颗粒的球形度
' r' H* C! i0 `' W3 T% d# R v1.2.3Stokes形状系数
, E4 b4 H( o+ K2 T7 I' K1.3颗粒的阻力系数与自由沉降速度# f1 a2 i" w" w5 M, W7 O: I
1.3.1球形颗粒的阻力系数与自由沉降速度8 G/ m1 g# z8 f# B: Y, m
1.3.2非球形颗粒的阻力系数与自由沉降速度 H. b" v* q& i. V1 v& \2 X, w
1.4颗粒间的作用力& A5 U# R; x2 m8 C; S8 Z
1.4.1分子间的范德华力( a' {: s' o- d1 L* m1 v
1.4.2颗粒间的范德华力
( R2 o2 b; d! p$ J- f* B1.4.3颗粒间的毛细力
, c1 Y2 n6 S( t/ v; |3 P2 K* n m1.4.4颗粒间的静电力- H' J% U: Y1 a$ b; y* n* M2 [
1.5颗粒的团聚性
3 m& J: m7 m/ n" r8 h, c! T# {# T5 {1.5.1团聚机理8 `$ H% W \; ]( k! L. `# Z; \ h
1.5.2聚团强度
: O" W! w9 O7 Y8 m# V# X. e参考文献
7 Q( ?$ ?( H, a) v2 a" w+ o* r0 L2粉体物性0 `& e: w4 c9 A6 ]
2.1粉体的堆积物性5 N2 w$ w* u/ O: D9 `, n2 X. Z
2.1.1粉体的堆积密度
0 G# ^' F4 y2 g& p& M4 M2.1.2粉体堆积的空隙率
+ r+ i( u: D8 {3 G2.1.3颗粒的配位数5 t8 ?. l$ ]/ ?* ~" h
2.2粉体的可压缩性: d$ [0 C: m: X; B* I
2.3粉体的安息角. L, N/ O; ] Y% @ X
2.4粉体的摩擦性: p. g+ h: g1 n8 L
2.4.1库仑定律
3 Z+ \3 ?) ], T5 F2.4.2内摩擦角7 d5 B) e8 `3 d7 l5 w. l$ i
2.4.3库仑定律的理论推导% o2 c6 Z# F4 [. _
2.5Molerus粉体分类
3 v* U. G: Z( C2.5.1MolerusⅠ类粉体
, \/ H' t8 f# m' C+ P: Q2.5.2MolerusⅡ类粉体( [8 v3 \: I6 Q6 [
2.5.3MolerusⅢ类粉体
, _& D7 Q! M! ^2.6粉体的流动性
) o% E$ e* L3 ^1 d B) A2.6.1粉体的开放屈服强度- O& l9 l0 k M8 M, J- G
2.6.2Jenike流动函数
6 O) k% w8 A( ?5 G参考文献
5 i, U1 y9 G7 `$ e5 l2.6.3拱应力分析 s& E8 N8 ]% Q
3粉体静力学9 V- J8 G* y, s' M/ ]; [) M
3.1莫尔应力圆$ Z6 t0 C6 ^8 }3 _. r( r+ ]
3.1.1粉体的应力规定
" H& ~# Q* M& E1 ] p- r/ e3.1.2莫尔应力圆
! e( U! f. k$ V' e3.2莫尔-库仑定律 P0 L% e4 g7 L+ r* K5 R
3.3壁面最大主应力方向
; \+ B$ O1 M7 B0 i/ l6 h3.4朗肯应力状态
; {3 {( Y: g& b" Y z$ r4 T3.5粉体应力Janssen近似分析方法! P" d: h4 z* v
3.5.1柱体应力分析
/ h: U* E" F1 R) V* m3.5.2锥体应力分析* Z R+ w$ {% f% y* h
3.5.3Walters转换应力8 i, {, `8 y* ?) x* L
3.5.4料仓应力分析! X; g6 \: h2 ?6 p# k1 \* ~/ \) Z4 T
3.6粉体应力精确分析方法
1 U+ R0 k3 F" {+ O: _& u3.6.1应力平衡方程
- T/ P( `( j/ f! {3.6.2柱体应力分布的渐近解( {! w# A7 c! h: x# O6 k
3.6.3锥体应力分布的渐近解$ B5 f S1 C+ y/ \" W! m
参考文献
' d2 N8 L3 N, b# }2 W, i9 \4粉体动力学
8 g A, V: }1 M3 G# \/ _+ x3 f4.1粉体流动的流型1 H8 h# c; N2 c" [5 Q) C
4.2质量流量公式
: [ m* D/ }2 Q* |4 j- I$ ^4.2.1经验关联式: K$ @$ v2 r. v p7 ], A; ^
4.2.2最小能量理论1 u0 \. ~$ Z, }+ I- L
4.3质量守恒方程
" j8 q Z' r! c7 T4.4动量守恒方程' W B: W6 B. Z* o r, l. V8 F C
4.5莫尔应变率圆# `; m$ V# Z+ c% m8 L9 e5 N! k4 j
4.5.1粉体微团的运动分析
# K2 K V/ p: D0 v( }4.5.2莫尔应变率圆
+ {; V) j" H* ]* i4.6粉体流动的本构关系% ^0 [( `- I* T; i' t, b
4.6.1共轴理论
z0 ~% M( i& ?5 J/ Z3 A4.6.2从Jenike剪切仪获得的应力-应变率关系
) j" g6 M: [0 w6 p4.6.3塑粘性本构关系 S) M/ I. j1 r- b
4.6.4塑粘性流体模型
4 r9 t2 W* u! }4.7柱体内质量流量的速度分布
7 @" |( ^% \$ Y) S: U; M5 S+ f4.7.1共轴理论的预测结果与实验结果的比较, J- @! m2 V# Q; _; u+ R
4.7.2塑粘性模型的预测结果与实验结果的比较3 j$ R( L0 h% b* _
4.8锥体内质量流动的速度分布
0 c( u/ @: @5 Q$ `# ?- R4.8.1共轴理论的预测结果与实验结果的比较
2 \9 b1 j0 k% T' V4.8.2塑粘性模型的预测结果与实验结果的比较/ M% r5 H% |3 t# |* q
参考文献
( b: f2 ?0 ]2 M0 e$ v' P5气-固两相系统
" x3 ?: J* f. S: I2 E5.1气-固的接触型式
5 x9 A" `* C: ^: f5 e& ^. i0 k5.2Reh气-固两相接触操作图
/ I. T* D0 S" z @0 X/ l5.2.1固定床颗粒的阻力系数
* K2 F8 z, V R5 H) j9 L2 i5.2.2悬浮颗粒的阻力系数' [- G- D6 u- S! Y! x
5.2.3Reh气-固两相接触操作图
$ X) R3 c4 N% G3 p& p: L* |9 r/ C5.3流化床的应用& D% k$ F8 P6 l* ?1 V6 e
5.3.1流态化技术发展现状0 @& s; d' `, b; V
5.3.2流化床化学反应器
1 L1 x1 c9 G) }" w. {5.3.3流化床物理操作4 A* G. r+ n1 x, w0 h9 s( R( K) [
5.3.421世纪的流态化技术. ?3 P+ f1 k% L8 G
5.4流态化特征与Geldart颗粒分类
; a0 O- r3 z; ?# M4 |" v5.4.1流态化基本特征1 ?- T* [- ?* s7 h! ~- p4 K' v' U
5.4.2最小流态化速度+ T8 T" N+ n9 l6 p9 b, q* D
5.4.3最小鼓泡速度* w8 g1 l8 _9 I8 n% Q. F9 y; g9 v! X
5.4.4流态化气泡特征/ ]6 ]: I0 [! j1 e5 S, \
5.4.5Geldart颗粒分类! l* b9 \5 K: h+ A
5.5流化床化学反应器模拟
' N- d! J$ j& x. E# I+ g5.5.1流化床反应器模型- k7 j0 m2 K. p2 z! d3 g6 K% p
5.5.2气泡与密相的传质系数9 i9 m& @4 P. w+ t1 N0 \$ T; k
5.5.3气泡相与密相的传质准数& W& V& H+ _0 \5 Z' k# w6 {* M
5.5.4颗粒反应动力学
; a% g( Q# f7 a& m$ o( f) `5.5.5化学反应器的Damkoler准数
) V& b; v- k! a/ L7 ^; l/ B5 P5.5.6流化床化学反应器模拟" y6 @! A% A: a" `% d, z
参考文献5 W4 ~4 w* B$ s# o1 S8 x' s, _! L
6造粒8 g) ~$ b; i3 q! L/ n- l
6.1造粒方法与颗粒尺寸9 [7 W& c9 L/ O& ^0 R
6.2火焰CVD造粒. R2 D: M( L* c. K
6.2.1火焰CVD造粒技术4 u7 U5 O/ E( P9 {6 z/ _
6.2.2火焰CVD造粒过程模拟
( d2 Y. Q4 ~# I6.3喷雾造粒
/ X/ m. z1 ^* Z& Q" G1 T6.3.1喷雾干燥造粒5 f2 a2 G' _! Y9 \! e1 O
6.3.2喷雾热解造粒
: d8 e! U5 M# X0 |: @ {2 p0 N- L6.4机械化学法造粒技术7 h8 R/ L% r' j. R v
参考文献6 O3 B7 b) c6 `
7粉碎
% x5 R0 K- x) v, a$ O# C5 |7.1颗粒的强度
9 C2 y8 V; }, M9 ^% S$ t7 I7.1.1颗粒的理想强度! [2 P4 {3 X3 J! K6 j
7.1.2颗粒强度. A; w0 w( I6 S6 B* Q
7.2粉碎功% W" |, }; F- w# A% V
7.3粉碎极限
4 E1 }$ C0 C' U( u+ @3 h参考文献
! \9 P: A5 B8 l5 ]4 x& m( e8混合
/ o; t! Y0 J' F- w+ w2 }: J) v; |8.1混合过程机理: l' j8 J) ]! f
8.2混合度
- a& G: s5 L6 @- s8.3取样及样品分析; I* m( ~- |# o6 j- F2 l' B
8.4混合设备: x/ b: S R- L
8.5影响混合的因素7 f4 q; f; b+ i
" D! y; d( J3 e4 |. D+ X4 T
: U: q3 f" q b& _/ E( G. j2 `http://www.lds03.cn/thread-24465-1-1.html! k- J# D4 U5 K. A0 c( N, L
3 t7 y- h4 y3 p% b
! a5 S' q4 Q9 p
! W5 ?* n# a, d+ O0 Q! C
- S# o/ _ a2 V `9 x" i5 c4 W
! B) Q+ o i7 x5 h1 U9 i, q1 f1 ~
9 L3 q' W" o+ K0 o; }: A ^+ ~3 l. d9 m
" V* V6 h+ ~9 Z2 V4 ~& f7 Q" T5 w+ c% _# G! ~# U. l
. D' O; o9 ^; Y$ y. L9 R, s: o+ Z" g( v! j9 V) d8 c
# D# y9 d' q( `6 W4 F
- F# [; J2 r- J: J8 H* W4 }9 }/ M; {1 o) b
。 |
|