|

楼主 |
发表于 2009-4-24 10:00:32
|
显示全部楼层
来自: 中国黑龙江佳木斯
初次上传,总照顾不周,决定取消权限
版规也非常仔细看了,但是第一次上传书籍的时候还是丢三落四,照顾及此,丢了彼处。重新回复编辑,取消下载权限的限制,并且重新上传,压缩包内容与一楼完全一样。自己以后也会多学习经验, 并为给论坛管理人员和论坛其他朋友带来的不便,深表歉意。
2 _: Z) ?+ @; {+ N$ r8 r《Crystals and Crystal Structures》这本书是由Tilley所著,在晶体材料领域影响比较大。这次版本在2006年再次发行。 将其压缩后制作为两个压缩包。 主要目录及封面摘录如下,供大家参考:
1 E! K' d4 m' L/ |, W& `5 ]Contents
+ d, u/ S( k8 ] z& NPreface9 c0 e( w1 C6 i, A5 @8 ~; n
1 Crystals and crystal structures
% W8 T# K4 U2 V* \' W6 N- _& O2 w1.1 Crystal families and crystal systems9 ?/ R$ z# E+ d% W8 n
1.2 Morphology and crystal classes J/ N; b& C& r4 K
1.3 The determination of crystal structures s& i8 d- ` S2 u+ T
1.4 The description of crystal structures! n# m+ e( l9 }
1.5 The cubic close-packed (A1) structure of copper
- M' m4 P8 l4 z Q8 t8 z- f1.6 The body-centred cubic (A2) structure of tungsten
8 ^; P+ z9 O! P! u5 `1 o- v1.7 The hexagonal (A3) structure of magnesium$ p" \( a* j2 l
1.8 The halite structure
% p8 h. n( e! R! r. \. b7 I8 I1.9 The rutile structure
/ N+ {1 H t2 L- p4 ~1.10 The fluorite structure' ^2 @4 e" P3 l+ Z) e0 q$ L
1.11 The structure of urea; v, t+ _: w6 C( m, T5 K
1.12 The density of a crystal
, M2 q8 t5 y7 j9 [( o% pAnswers to introductory questions3 G) h1 Z# a# j% |( n8 L- K! o7 n
Problems and exercises- N# w6 n% k$ k; P1 {- j; ~* w* g" N
2 Lattices, planes and directions7 T# v2 @4 @! o
2.1 Two-dimensional lattices
, A8 P: \3 \& c/ G0 M2 k1 ^1 v+ f2.2 Unit cells
# [4 N7 T4 f2 ~5 n2.3 The reciprocal lattice in two dimensions. Z7 ^; X8 j8 C; z# ?0 ]- i& k3 g
2.4 Three-dimensional lattices: F& J3 k( K! m$ z# r) x
2.5 Alternative unit cells
4 n/ M8 ?+ ~' O- W ~$ {6 c" l2.6 The reciprocal lattice in three dimensions
9 R2 m: s# f- [2 ]2.7 Lattice planes and Miller indices
$ r6 K6 C# c5 J$ P R- E2 h% z2.8 Hexagonal lattices and Miller-Bravais indices
" p8 u7 c# e. c- P+ m2.9 Miller indices and planes in crystals
3 L; u- o4 x1 L2.10 Directions( [: @/ i7 C0 G% E6 p2 ]4 i4 `: B
2.11 Lattice geometry
/ T% Q; h; h8 a% D) f/ F- E5 `/ `Answers to introductory questions8 T8 m7 O. \" u. S8 W0 [: {2 ~
Problems and exercises 3 C5 j; \8 l, R
3 Two-dimensional patterns and tiling
! O/ b# h# w. O9 C3.1 The symmetry of an isolated shape: point symmetry2 M( P& T. @* p9 o v! G# Y
3.2 Rotation symmetry of a plane lattice
3 C+ U+ b5 j) k# G% z6 B9 P8 b3.3 The symmetry of the plane lattices9 w/ e) a+ o0 O6 P& Y
3.4 The ten plane crystallographic point symmetry groups9 s7 W$ r S% ~# \, z, a' Q# F( E
3.5 The symmetry of patterns: the 17 plane groups, C; O$ T8 [; C; X
3.6 Two-dimensional ‘crystal structures’
% X6 a G( d8 Y9 @! l# v3.7 General and special positions4 Z( m$ ^/ ~7 ~; e- z9 Z
3.8 Tesselations
7 P2 E z' j: n9 `Answers to introductory questions
8 \8 C- \; ?0 i! B* D1 s/ oProblems and exercises
" n- K6 t, a1 {4 Symmetry in three dimensions7 |: @9 t Z+ ~( k6 r
4.1 The symmetry of an object: point symmetry o. Y" ~4 n* O1 x
4.2 Axes of inversion: rotoinversion
- P, }6 U& L, Q1 _. t4.3 Axes of inversion: rotoreflection* g7 M. T: y) }
4.4 The Hermann-Mauguin symbols for point groups6 w& L0 N. M( C" u$ L0 \. n
4.5 The symmetry of the Bravais lattices
$ C5 O ?. d7 H, |6 D3 U4.6 The crystallographic point groups( h. B9 x0 L7 U6 X U
4.7 Point groups and physical properties
+ m' Q2 ?3 \7 w0 f4.8 Dielectric properties
& b: [" y2 G2 f8 Y* U& r/ [4.9 Refractive index- { \9 u$ f; ?, ?9 U
4.10 Optical activity7 k# f1 v8 Z, e* p
4.11 Chiral molecules" [" b" |7 \( H, e
4.12 Second harmonic generation
6 a; T$ `! E& _% d% P/ |- h% i! G4.13 Magnetic point groups and colour symmetry
, O" t8 B" ~6 N$ W) {Answers to introductory questions1 g' @) U9 v! a+ C! P$ e+ P
Problems and exercises) Z& z$ I. u8 v8 J& l
5 Building crystal structures from lattices and space groups7 K" R2 N4 ]. O6 k" F( m
5.1 Symmetry of three-dimensional patterns: space groups! E+ H( L/ {6 `8 ~* X9 q4 z8 d# f
5.2 The crystallographic space groups0 l* l% j( ~( j x9 G. W! B, s% N, E: r
5.3 Space group symmetry symbols* b$ \: ?! T: L u& S
5.4 The graphical representation of the space groups
5 G! |2 Q ] n- y" W5 V) O' [5.5 Building a structure from a space group
?5 ^. s! @2 d- J6 p7 s5.6 The structure of diopside, CaMgSi2O66 R+ L. e: J2 m a9 {" C
5.7 The structure of alanine, C3H7NO2
6 G4 I7 L) r. t+ jAnswers to introductory questions
1 }+ k8 f1 N% U2 S, a* jProblems and exercises
6 `9 f9 j+ t% W& p9 W& Y' V6 Diffraction and crystal structures- ^$ o/ V1 i" ^
6.1 The position of diffracted beams: Bragg’s law
* S! ~5 v# l8 W8 ~7 X6.2 The geometry of the diffraction pattern2 O8 u7 q0 `( s& v, r; ~
6.3 Particle size& A8 L0 [( L s" D1 [
6.4 The intensities of diffracted beams3 r% O7 {) B: }; A4 `
6.5 The atomic scattering factor+ o5 N: K1 W2 i+ s) R) }; q
6.6 The structure factor
1 w, Z: j$ @( D# n5 A# E' k6.7 Structure factors and intensities% \; k' k# i) c) U% i
6.8 Numerical evaluation of structure factors0 k) Z; d) E) i# d( r- _% e
6.9 Symmetry and reflection intensities
& \# J0 W# b% w8 s; z7 o; N6.10 The temperature factor
$ P! {) @: y4 M: \' h6.11 Powder X-ray diffraction
- Q! Q# S' B" q! }% r5 r9 ~: X6.12 Electron microscopy and structure images# t. Z0 i, x6 e @
6.13 Structure determination using X-ray diffraction
! w0 m+ s- W, T8 d$ f5 f3 @6.14 Neutron diffraction
) K! F; z# O( E9 Y; e7 v$ N6 i1 a6.15 Protein crystallography: R9 e! v! |& p% B |5 d5 u
6.16 Solving the phase problem2 @- z* m# ]$ A. L( q
6.17 Photonic crystals* p1 r. d0 ~- }) |
Answers to introductory questions
( J" a1 d: E! @( r' c1 F6 oProblems and exercises( m( X8 J' r2 }- P( K
7 The depiction of crystal structures# J) K2 _' W; B1 N. S
7.1 The size of atoms
9 R7 @" ^' L P5 L$ t4 z7.2 Sphere packing
, W9 u# N, N; F% L9 D, _ a7.3 Metallic radii
% C/ H5 @; m: |1 e. a" [( Q, s5 j7.4 Ionic radii
0 s0 b! {. ]$ r7 ~7.5 Covalent radii
0 ~8 T' L( L4 U/ e" x( }7.6 Van der Waals radii
5 F' R7 }, }& }4 G7.7 Ionic structures and structure building rules9 a( V" ?6 G/ w* G: ?$ A# k N
7.8 The bond valence model2 Y0 \2 y3 ]( d, S+ G* T% t
7.9 Structures in terms of non-metal (anion) packing4 u/ v# j3 b- V; b
7.10 Structures in terms of metal (cation) packing
) C9 }3 f/ R4 o0 q& @' j! J7.11 Cation-centred polyhedral representations of crystals; H* R7 q4 H: ?2 O* w
7.12 Anion-centred polyhedral representations of crystals
$ F `, W$ h T8 U7.13 Structures as nets- L6 w6 z5 @- C/ M6 {2 _! d
7.14 The depiction of organic structures8 C1 l1 _" X4 X4 I, I7 z
7.15 The representation of protein structures7 u3 [ A3 l$ `( C* q0 s) o0 g' ?" Y
Answers to introductory questions
/ ^8 G$ H6 X" {1 J8 \$ jProblems and exercises
/ y; [0 S" |) L0 R8 Defects, modulated structures and quasicrystals8 \; y$ F4 j9 _8 U5 F# c9 o6 ?
8.1 Defects and occupancy factors3 X5 V3 ?, l H5 u2 p: [
8.2 Defects and unit cell parameters
5 z0 L: b6 E& R; {8.3 Defects and density* O$ Z9 w( A' E
8.4 Modular structures
' H: Z9 U% a- D& S8.5 Polytypes
! y+ ?. }: u# D& I) c8.6 Crystallographic shear phases
9 M+ k D V& E" E4 H$ ~5 c8.7 Planar intergrowths and polysomes8 q* z" H8 D- [) ?5 o
8.8 Incommensurately modulated structures
( X( i* _" [' Z" U3 H8.9 Quasicrystals+ q9 a Q5 |5 k) ]8 {5 A7 ]
Answers to introductory questions
2 e) q% w7 r- w6 UProblems and exercises. W% o; d4 {" r3 c: u
Appendices* d: g7 i1 F) w
Appendix 1 Vector addition and subtraction
7 ]. b: ?) a- wAppendix 2 Data for some inorganic crystal structures* Q) O6 {% g% Q* n
Appendix 3 Schoenflies symbols
' o/ b1 s$ T& F! B, U8 BAppendix 4 The 230 space groups
' m) c7 ~- m6 A R2 E7 x4 uAppendix 5Complex numbers5 ~) M6 n. O7 Z
Appendix 6Complex amplitudes
1 D5 T/ A: g+ H' r( t$ WAnswers to problems and exercises
1 u: v& M+ N1 o' e/ l; C& ABibliography- y5 B2 O9 C7 ?1 R
Formula index
" \; X: n4 X+ z& rSubject index |
|