QQ登录

只需一步,快速开始

登录 | 注册 | 找回密码

三维网

 找回密码
 注册

QQ登录

只需一步,快速开始

展开

通知     

全站
11天前
查看: 1966|回复: 2
收起左侧

[书籍] 很有名的 英文版 Tilley_Crystals and Crystal Structures

 关闭 [复制链接]
发表于 2009-4-23 14:57:01 | 显示全部楼层 |阅读模式 来自: 中国黑龙江佳木斯

马上注册,结识高手,享用更多资源,轻松玩转三维网社区。

您需要 登录 才可以下载或查看,没有帐号?注册

x
《Crystals and Crystal Structures》由 Tilley  所著,在晶体研究领域影响很大。

Tilley_Crystals and Crystal Structures.part1.rar

1.95 MB, 阅读权限: 30, 下载次数: 3

Tilley_Crystals and Crystal Structures.part2.rar

1.29 MB, 阅读权限: 30, 下载次数: 3

评分

参与人数 1三维币 +20 收起 理由
云动风清 + 20 好资料,感谢您对论坛的支持!

查看全部评分

 楼主| 发表于 2009-4-24 09:33:08 | 显示全部楼层 来自: 中国黑龙江佳木斯

修改后《Crystals and Crystal Structures》[PDF+书签] Tilley

《Crystals and Crystal Structures》[PDF+书签] Tilley% W8 V0 I0 _  t; N
Contents- I$ m! o; c7 o) b
Preface8 k+ w; K# u# x) I( `
1 Crystals and crystal structures
% _+ D+ ~9 d% y) G+ ]1.1 Crystal families and crystal systems8 m/ k# \- k/ M  D( D% W
1.2 Morphology and crystal classes8 H6 {/ |1 o: F) T# X# g
1.3 The determination of crystal structures
7 p& x( n9 Y1 T7 L1.4 The description of crystal structures
, O' q7 m( Q- n1.5 The cubic close-packed (A1) structure of copper
7 S# U. b6 P. a1.6 The body-centred cubic (A2) structure of tungsten' g0 @; T1 Z# g
1.7 The hexagonal (A3) structure of magnesium
/ v% R! z9 [: e: P9 j; D6 s% P1.8 The halite structure
8 n5 x- O" e. e" Q1.9 The rutile structure/ [/ ?7 {& W# h# c; ]+ h! O9 x' y
1.10 The fluorite structure
" w8 I5 P  x6 @5 [1 m) ~8 o1.11 The structure of urea! \( V1 p, H3 Y& R& c
1.12 The density of a crystal
* o7 {. L' v. g; [Answers to introductory questions
& R( Z% J% E# BProblems and exercises$ ?; G& S- b6 l" P0 z
2  Lattices, planes and directions! r8 K, @/ B9 t: I
2.1 Two-dimensional lattices
: Z; m# ~$ n; M2 B) u' h2.2 Unit cells' a, t. m6 k7 d: x5 I/ o
2.3 The reciprocal lattice in two dimensions
# N. e) @8 n1 W: w6 a. ?2.4 Three-dimensional lattices; B+ {. r" V" \$ s. R( S
2.5 Alternative unit cells
" h' @7 s6 s7 v5 U* J$ K& x/ ^2.6 The reciprocal lattice in three dimensions$ Z7 }9 v8 ?8 ?8 o( e9 e
2.7 Lattice planes and Miller indices
6 G) E0 o* V: n, q. V6 }& ?" _2.8 Hexagonal lattices and Miller-Bravais indices: Z' m4 x( _( G4 a7 ]  b( \" P3 u
2.9 Miller indices and planes in crystals
  ^' Y& S$ _4 O8 r, B  c2.10 Directions0 f. s1 \6 V# S
2.11 Lattice geometry
6 j: R( \1 E, _3 y4 O# BAnswers to introductory questions
: Q) t" T8 G$ ?# l0 j! dProblems and exercises 6 [7 z1 O: F' e1 p
3 Two-dimensional patterns and tiling
7 N2 i3 z; K7 Q9 l' B# [# T3.1 The symmetry of an isolated shape: point symmetry
, L; W7 o' ~4 [  ?2 f  y# N/ C. h+ `9 X3.2 Rotation symmetry of a plane lattice5 A4 B$ Y6 v  s) D3 l% Q
3.3 The symmetry of the plane lattices
) c7 G' Q, m. }4 m3.4 The ten plane crystallographic point symmetry groups! j3 d, O& j' ?
3.5 The symmetry of patterns: the 17 plane groups# G! U+ f6 V3 Z: ^
3.6 Two-dimensional ‘crystal structures’
" }3 ]- I8 q5 X2 C- h3.7 General and special positions; D- v  Q; ^( D* e( g4 @+ o& G( j! z
3.8 Tesselations/ G( ^  c$ G- g! M: F* f
Answers to introductory questions/ f, Z  V# x; @  C* k; U
Problems and exercises" H' X% @  ~& O: n: n& R" d' g
4  Symmetry in three dimensions  n: P4 z* l* h6 L
4.1 The symmetry of an object: point symmetry4 {5 v8 K* x) A' N6 K% d7 G6 l; E) x
4.2 Axes of inversion: rotoinversion
, t) i5 z) x5 U4 f( B3 |" w! [: A& p4.3 Axes of inversion: rotoreflection, m- @6 V! K. f: @7 s1 p' r: M
4.4 The Hermann-Mauguin symbols for point groups
1 w, Q9 a5 X) ?+ H$ n& F' e4.5 The symmetry of the Bravais lattices
6 q( C5 c: h( z! w. H- g4.6 The crystallographic point groups4 d6 A/ F$ L& k  L& E# x
4.7 Point groups and physical properties  n$ g- E8 v" Z2 r7 I: M
4.8 Dielectric properties$ D8 `! L/ O3 @
4.9 Refractive index
5 Y2 G1 \" o* G, s0 T" R& V4.10 Optical activity& \: r. a) ~7 P9 S; ?) k
4.11 Chiral molecules
& V2 f7 ?4 D" ?2 @+ P' a; y4.12 Second harmonic generation9 c8 w3 Q+ |1 J& S, Z* |
4.13 Magnetic point groups and colour symmetry4 E! q3 D: {  D$ V. y. J4 v
Answers to introductory questions
) m; a! Z+ s6 @4 n% @8 K1 ~7 {Problems and exercises
6 e& V8 @  Y7 z% H5  Building crystal structures from lattices and space groups
; T3 T/ e% c# Q' F5.1 Symmetry of three-dimensional patterns: space groups
  V+ H- ~9 d2 t9 y5.2 The crystallographic space groups# l4 M- j6 h5 ^( E3 g! |
5.3 Space group symmetry symbols4 ]5 M# s3 t2 V4 n
5.4 The graphical representation of the space groups
5 r; |: ?7 j8 e0 L  p1 ?5.5 Building a structure from a space group% ?+ m$ ?! z1 \
5.6 The structure of diopside, CaMgSi2O6
: {+ `9 ]5 B2 I, D" G5 E5.7 The structure of alanine, C3H7NO2
( J; l0 \4 z) g4 j2 Y0 w5 s# H& }Answers to introductory questions) D2 J* U9 q$ }: E& |7 M9 `4 M
Problems and exercises
) q* b4 x  L; t6
: I; T' W+ B; i% o8 dDiffraction and crystal structures
3 `9 p% v" C, v* Q+ Z
6.1 The position of diffracted beams: Bragg’s law( N' T2 i2 ]: K, G% R4 R. E9 }
6.2 The geometry of the diffraction pattern
* X! ~% ]" I$ L" Q2 v4 M6 j( g6.3 Particle size
5 I6 {& R* s; G6 e: s5 k- j: I6.4 The intensities of diffracted beams
. Q0 c: R: z6 d/ w6.5 The atomic scattering factor
  o! J2 s. `7 }8 |0 k7 P( z6.6 The structure factor" B2 S5 `( S) v3 \# t; U& ~
6.7 Structure factors and intensities" Q- V7 }# u/ q8 m0 \
6.8 Numerical evaluation of structure factors: @" v7 _) C0 g1 r5 f1 q
6.9 Symmetry and reflection intensities
/ g) b4 q9 |0 Z0 d3 k/ X+ S5 q. f6.10 The temperature factor' F8 e7 b' E8 x
6.11 Powder X-ray diffraction
/ m- g8 S; F, ~- D( h6.12 Electron microscopy and structure images
% J8 v7 X8 B; I" q% U+ N5 ?& U6.13 Structure determination using X-ray diffraction
! G5 b8 }7 @5 S5 e6.14 Neutron diffraction  o! h/ n) Z/ }. G, d) a9 ?/ [- i
6.15 Protein crystallography
& _; h% p4 ?: }6.16 Solving the phase problem
' l3 e' Q2 }5 P2 \1 t: ^6.17 Photonic crystals0 ~" w% b& g  V' ?
Answers to introductory questions  \/ c7 m: C8 @) [, k* Q% E
Problems and exercises
" `0 m+ b* r5 h% `# N7  The depiction of crystal structures8 o/ \/ V- @* v( ~+ `, I* `* M( @! [
7.1 The size of atoms
# ~" E! l  {" N2 }" x7.2 Sphere packing8 W& ]6 m" {4 S+ F
7.3 Metallic radii
0 l; a) b  g  q* {3 e" _) A7.4 Ionic radii
, p" b- D( J" I7.5 Covalent radii# X3 Y* @# W. b( r& U9 h; w+ P* \
7.6 Van der Waals radii
- t8 P" J5 Q! w- j# G7 |7.7 Ionic structures and structure building rules" c6 ?9 q* `+ v0 u- v+ Z# x' d/ f9 N
7.8 The bond valence model
! t& V3 Y- H3 }9 X7.9 Structures in terms of non-metal (anion) packing
& y, K5 k( R9 p; d3 _& Y& `- a7.10 Structures in terms of metal (cation) packing3 d; g6 s* u8 q2 n( r, p! A! u0 B/ Y
7.11 Cation-centred polyhedral representations of crystals
# n% e' {7 a* Z  i, b7.12 Anion-centred polyhedral representations of crystals
( m0 J8 `* e* F$ q  G7.13 Structures as nets
/ A" r( F8 D1 g4 L+ [! a7.14 The depiction of organic structures
( \3 Z* u" V  l' c" ^; ^$ M7.15 The representation of protein structures! a2 d! L! G, `8 ]6 c
Answers to introductory questions
8 a$ t; ~6 U- B% e  x" bProblems and exercises9 ~  G9 P; V7 Y4 \# N6 R2 c
8   Defects, modulated structures and quasicrystals6 Q7 l4 r1 R# t0 k& O4 B
8.1 Defects and occupancy factors5 |. Z# x, m: W, ?  J# V
8.2 Defects and unit cell parameters
$ H% K, o( W$ B' ?8.3 Defects and density8 i0 q2 o  X# B# |
8.4 Modular structures8 n5 H" L8 U3 n4 I7 K( k8 r- y
8.5 Polytypes
+ y1 ^# N: y& ?! J4 B8.6 Crystallographic shear phases( l7 [8 K9 O" c. C3 w& F% y
8.7 Planar intergrowths and polysomes
6 L  Y0 A8 G* n. Z/ I8.8 Incommensurately modulated structures0 Z; t+ T. p! n) B7 L
8.9 Quasicrystals
' g7 q7 P) I3 N* c/ p) X2 gAnswers to introductory questions# M/ c# M/ o0 s4 [& Y
Problems and exercises+ f/ }) g3 f! @0 s
Appendices
4 I; F+ K7 I2 L* `* n; mAppendix 1 Vector addition and subtraction
; m/ p6 c7 ~+ Y  ~Appendix 2 Data for some inorganic crystal structures
- V5 Y6 x  d) e  V! YAppendix 3 Schoenflies symbols. |) s2 _- v  z- [' F: D9 ~
Appendix 4 The 230 space groups9 b: p) q! p/ d8 i' o2 T
Appendix 5 Complex numbers
# k- x! q* P! E6 }% bAppendix 6 Complex amplitudes! J1 G: L& Q; {* [$ D7 U0 g
Answers to problems and exercises
: H9 E" c6 v; ?. G7 l5 c0 gBibliography
2 R- J/ {& l% P9 S, L$ c# J6 k8 zFormula index2 l! K+ ^' v( E# o
Subject index
. j5 f* T9 c$ w7 C3 Z3 {4 N# b
image001.jpg
 楼主| 发表于 2009-4-24 10:00:32 | 显示全部楼层 来自: 中国黑龙江佳木斯

初次上传,总照顾不周,决定取消权限

版规也非常仔细看了,但是第一次上传书籍的时候还是丢三落四,照顾及此,丢了彼处。重新回复编辑,取消下载权限的限制,并且重新上传,压缩包内容与一楼完全一样。自己以后也会多学习经验, 并为给论坛管理人员和论坛其他朋友带来的不便,深表歉意。
2 _: Z) ?+ @; {+ N$ r8 r《Crystals and Crystal Structures》这本书是由Tilley所著,在晶体材料领域影响比较大。这次版本在2006年再次发行。  将其压缩后制作为两个压缩包。 主要目录及封面摘录如下,供大家参考:
1 E! K' d4 m' L/ |, W& `5 ]Contents
+ d, u/ S( k8 ]  z& NPreface9 c0 e( w1 C6 i, A5 @8 ~; n
1   Crystals and crystal structures
% W8 T# K4 U2 V* \' W6 N- _& O2 w1.1 Crystal families and crystal systems9 ?/ R$ z# E+ d% W8 n
1.2 Morphology and crystal classes  J/ N; b& C& r4 K
1.3 The determination of crystal structures  s& i8 d- `  S2 u+ T
1.4 The description of crystal structures! n# m+ e( l9 }
1.5 The cubic close-packed (A1) structure of copper
- M' m4 P8 l4 z  Q8 t8 z- f1.6 The body-centred cubic (A2) structure of tungsten
8 ^; P+ z9 O! P! u5 `1 o- v1.7 The hexagonal (A3) structure of magnesium$ p" \( a* j2 l
1.8 The halite structure
% p8 h. n( e! R! r. \. b7 I8 I1.9 The rutile structure
/ N+ {1 H  t2 L- p4 ~1.10 The fluorite structure' ^2 @4 e" P3 l+ Z) e0 q$ L
1.11 The structure of urea; v, t+ _: w6 C( m, T5 K
1.12 The density of a crystal
, M2 q8 t5 y7 j9 [( o% pAnswers to introductory questions3 G) h1 Z# a# j% |( n8 L- K! o7 n
Problems and exercises- N# w6 n% k$ k; P1 {- j; ~* w* g" N
2   Lattices, planes and directions7 T# v2 @4 @! o
2.1 Two-dimensional lattices
, A8 P: \3 \& c/ G0 M2 k1 ^1 v+ f2.2 Unit cells
# [4 N7 T4 f2 ~5 n2.3 The reciprocal lattice in two dimensions. Z7 ^; X8 j8 C; z# ?0 ]- i& k3 g
2.4 Three-dimensional lattices: F& J3 k( K! m$ z# r) x
2.5 Alternative unit cells
4 n/ M8 ?+ ~' O- W  ~$ {6 c" l2.6 The reciprocal lattice in three dimensions
9 R2 m: s# f- [2 ]2.7 Lattice planes and Miller indices
$ r6 K6 C# c5 J$ P  R- E2 h% z2.8 Hexagonal lattices and Miller-Bravais indices
" p8 u7 c# e. c- P+ m2.9 Miller indices and planes in crystals
3 L; u- o4 x1 L2.10 Directions( [: @/ i7 C0 G% E6 p2 ]4 i4 `: B
2.11 Lattice geometry
/ T% Q; h; h8 a% D) f/ F- E5 `/ `Answers to introductory questions8 T8 m7 O. \" u. S8 W0 [: {2 ~
Problems and exercises 3 C5 j; \8 l, R
3   Two-dimensional patterns and tiling
! O/ b# h# w. O9 C3.1 The symmetry of an isolated shape: point symmetry2 M( P& T. @* p9 o  v! G# Y
3.2 Rotation symmetry of a plane lattice
3 C+ U+ b5 j) k# G% z6 B9 P8 b3.3 The symmetry of the plane lattices9 w/ e) a+ o0 O6 P& Y
3.4 The ten plane crystallographic point symmetry groups9 s7 W$ r  S% ~# \, z, a' Q# F( E
3.5 The symmetry of patterns: the 17 plane groups, C; O$ T8 [; C; X
3.6 Two-dimensional ‘crystal structures’
% X6 a  G( d8 Y9 @! l# v3.7 General and special positions4 Z( m$ ^/ ~7 ~; e- z9 Z
3.8 Tesselations
7 P2 E  z' j: n9 `Answers to introductory questions
8 \8 C- \; ?0 i! B* D1 s/ oProblems and exercises
" n- K6 t, a1 {4   Symmetry in three dimensions7 |: @9 t  Z+ ~( k6 r
4.1 The symmetry of an object: point symmetry  o. Y" ~4 n* O1 x
4.2 Axes of inversion: rotoinversion
- P, }6 U& L, Q1 _. t4.3 Axes of inversion: rotoreflection* g7 M. T: y) }
4.4 The Hermann-Mauguin symbols for point groups6 w& L0 N. M( C" u$ L0 \. n
4.5 The symmetry of the Bravais lattices
$ C5 O  ?. d7 H, |6 D3 U4.6 The crystallographic point groups( h. B9 x0 L7 U6 X  U
4.7 Point groups and physical properties
+ m' Q2 ?3 \7 w0 f4.8 Dielectric properties
& b: [" y2 G2 f8 Y* U& r/ [4.9 Refractive index- {  \9 u$ f; ?, ?9 U
4.10 Optical activity7 k# f1 v8 Z, e* p
4.11 Chiral molecules" [" b" |7 \( H, e
4.12 Second harmonic generation
6 a; T$ `! E& _% d% P/ |- h% i! G4.13 Magnetic point groups and colour symmetry
, O" t8 B" ~6 N$ W) {Answers to introductory questions1 g' @) U9 v! a+ C! P$ e+ P
Problems and exercises) Z& z$ I. u8 v8 J& l
5   Building crystal structures from lattices and space groups7 K" R2 N4 ]. O6 k" F( m
5.1 Symmetry of three-dimensional patterns: space groups! E+ H( L/ {6 `8 ~* X9 q4 z8 d# f
5.2 The crystallographic space groups0 l* l% j( ~( j  x9 G. W! B, s% N, E: r
5.3 Space group symmetry symbols* b$ \: ?! T: L  u& S
5.4 The graphical representation of the space groups
5 G! |2 Q  ]  n- y" W5 V) O' [5.5 Building a structure from a space group
  ?5 ^. s! @2 d- J6 p7 s5.6 The structure of diopside, CaMgSi2O66 R+ L. e: J2 m  a9 {" C
5.7 The structure of alanine, C3H7NO2
6 G4 I7 L) r. t+ jAnswers to introductory questions
1 }+ k8 f1 N% U2 S, a* jProblems and exercises
6 `9 f9 j+ t% W& p9 W& Y' V6   Diffraction and crystal structures- ^$ o/ V1 i" ^
6.1 The position of diffracted beams: Bragg’s law
* S! ~5 v# l8 W8 ~7 X6.2 The geometry of the diffraction pattern2 O8 u7 q0 `( s& v, r; ~
6.3 Particle size& A8 L0 [( L  s" D1 [
6.4 The intensities of diffracted beams3 r% O7 {) B: }; A4 `
6.5 The atomic scattering factor+ o5 N: K1 W2 i+ s) R) }; q
6.6 The structure factor
1 w, Z: j$ @( D# n5 A# E' k6.7 Structure factors and intensities% \; k' k# i) c) U% i
6.8 Numerical evaluation of structure factors0 k) Z; d) E) i# d( r- _% e
6.9 Symmetry and reflection intensities
& \# J0 W# b% w8 s; z7 o; N6.10 The temperature factor
$ P! {) @: y4 M: \' h6.11 Powder X-ray diffraction
- Q! Q# S' B" q! }% r5 r9 ~: X6.12 Electron microscopy and structure images# t. Z0 i, x6 e  @
6.13 Structure determination using X-ray diffraction
! w0 m+ s- W, T8 d$ f5 f3 @6.14 Neutron diffraction
) K! F; z# O( E9 Y; e7 v$ N6 i1 a6.15 Protein crystallography: R9 e! v! |& p% B  |5 d5 u
6.16 Solving the phase problem2 @- z* m# ]$ A. L( q
6.17 Photonic crystals* p1 r. d0 ~- }) |
Answers to introductory questions
( J" a1 d: E! @( r' c1 F6 oProblems and exercises( m( X8 J' r2 }- P( K
7   The depiction of crystal structures# J) K2 _' W; B1 N. S
7.1 The size of atoms
9 R7 @" ^' L  P5 L$ t4 z7.2 Sphere packing
, W9 u# N, N; F% L9 D, _  a7.3 Metallic radii
% C/ H5 @; m: |1 e. a" [( Q, s5 j7.4 Ionic radii
0 s0 b! {. ]$ r7 ~7.5 Covalent radii
0 ~8 T' L( L4 U/ e" x( }7.6 Van der Waals radii
5 F' R7 }, }& }4 G7.7 Ionic structures and structure building rules9 a( V" ?6 G/ w* G: ?$ A# k  N
7.8 The bond valence model2 Y0 \2 y3 ]( d, S+ G* T% t
7.9 Structures in terms of non-metal (anion) packing4 u/ v# j3 b- V; b
7.10 Structures in terms of metal (cation) packing
) C9 }3 f/ R4 o0 q& @' j! J7.11 Cation-centred polyhedral representations of crystals; H* R7 q4 H: ?2 O* w
7.12 Anion-centred polyhedral representations of crystals
$ F  `, W$ h  T8 U7.13 Structures as nets- L6 w6 z5 @- C/ M6 {2 _! d
7.14 The depiction of organic structures8 C1 l1 _" X4 X4 I, I7 z
7.15 The representation of protein structures7 u3 [  A3 l$ `( C* q0 s) o0 g' ?" Y
Answers to introductory questions
/ ^8 G$ H6 X" {1 J8 \$ jProblems and exercises
/ y; [0 S" |) L0 R8  Defects, modulated structures and quasicrystals8 \; y$ F4 j9 _8 U5 F# c9 o6 ?
8.1 Defects and occupancy factors3 X5 V3 ?, l  H5 u2 p: [
8.2 Defects and unit cell parameters
5 z0 L: b6 E& R; {8.3 Defects and density* O$ Z9 w( A' E
8.4 Modular structures
' H: Z9 U% a- D& S8.5 Polytypes
! y+ ?. }: u# D& I) c8.6 Crystallographic shear phases
9 M+ k  D  V& E" E4 H$ ~5 c8.7 Planar intergrowths and polysomes8 q* z" H8 D- [) ?5 o
8.8 Incommensurately modulated structures
( X( i* _" [' Z" U3 H8.9 Quasicrystals+ q9 a  Q5 |5 k) ]8 {5 A7 ]
Answers to introductory questions
2 e) q% w7 r- w6 UProblems and exercises. W% o; d4 {" r3 c: u
Appendices* d: g7 i1 F) w
Appendix 1 Vector addition and subtraction
7 ]. b: ?) a- wAppendix 2 Data for some inorganic crystal structures* Q) O6 {% g% Q* n
Appendix 3 Schoenflies symbols
' o/ b1 s$ T& F! B, U8 BAppendix 4 The 230 space groups
' m) c7 ~- m6 A  R2 E7 x4 uAppendix 5Complex numbers5 ~) M6 n. O7 Z
Appendix 6Complex amplitudes
1 D5 T/ A: g+ H' r( t$ WAnswers to problems and exercises
1 u: v& M+ N1 o' e/ l; C& ABibliography- y5 B2 O9 C7 ?1 R
Formula index
" \; X: n4 X+ z& rSubject index
封面.jpg

《Crystals and Crystal Structures》.part1.rar

1.95 MB, 下载次数: 7

《Crystals and Crystal Structures》.part2.rar

1.29 MB, 下载次数: 7

发表回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Licensed Copyright © 2016-2020 http://www.3dportal.cn/ All Rights Reserved 京 ICP备13008828号

小黑屋|手机版|Archiver|三维网 ( 京ICP备2023026364号-1 )

快速回复 返回顶部 返回列表