QQ登录

只需一步,快速开始

登录 | 注册 | 找回密码

三维网

 找回密码
 注册

QQ登录

只需一步,快速开始

展开

通知     

查看: 2182|回复: 2
收起左侧

[分享] 不锈钢的工艺性能

 关闭 [复制链接]
发表于 2006-10-7 17:25:44 | 显示全部楼层 |阅读模式 来自: 中国广东佛山

马上注册,结识高手,享用更多资源,轻松玩转三维网社区。

您需要 登录 才可以下载或查看,没有帐号?注册

x
不锈钢的工艺性能(一); `8 r4 s; u4 V! W

# F$ e2 k$ P4 ]& N一、成形性能
9 q" Y3 _/ W! U1 h8 {不锈钢的成形性能因钢种的不同,即结晶结构的不同而有很大的差异。如铁素体型不锈钢和奥氏体型不锈钢的成形性能由于前者的晶体结构是体心立方,而后者的晶体结构是面心立方而有显著的差异。& k8 j- g6 J$ F5 A1 R+ R
铁素体不锈钢的凸缘成形性能与n值(加工硬化指数)有关,深冲加工性能与r值(塑性应变化)有关。其中r值由不同的生产工艺下的不同的组织集合来决定。采取一些措施来显著减少固溶碳和固溶氮,可大大改善r值并使深冲性能得到大幅度的提高。
+ U) J/ t8 O1 x' [- N/ m奥氏体型不锈钢一般来说n值较大,在进行加工的过程中由于塑性诱发相变而生成马氏体,因而有较大的n值和延伸率,可进行深冲加工和凸缘成形。有一部分奥氏体型不锈钢在深冲加工后,经一段时间会产生与冲压方向相一致的纵向裂纹,即所谓的“时效裂纹”。为此采用高镍,低氮和低碳的奥氏体型不锈钢可避免该缺陷的发生。, B6 f; E# T9 y' e* x. Z7 F. Q
奥氏体型不锈钢中所含的镍可明显降低钢的冷加工硬化倾向,其原因是可使奥氏体的稳定性增加,减少或消除了冷加工过程中的马氏体转变,降低了冷加工硬化速率,强度降低和塑性提高。: i8 e: o. a: T( Y7 n* T
在双相不锈钢中增加镍的含量可降低马氏体转变温度,从而改善了冷加工变形性能。, D2 M4 x8 y+ k. D$ u3 Y
在评价不锈钢钢板的成形加工性时,一般以综合成形性能来标志。该综合成形性能是由标志断裂极限的抗断裂性(深冲性能、凸缘成形性能、边部延伸性能、弯曲性能),标志成形模具和材料的配合性的抗起皱性,标志卸载后固定形状的形状固定性等组成。& @/ J7 c7 i% \$ r3 r6 A
对不锈钢钢板的工艺性能进行评价主要有以下试验方法:
, B% w1 ~& M3 z3 W7 v! Y  E
( H8 n1 c$ q3 B/ \" b(1)拉伸试验;
7 O" ~3 f) ~0 i% }" m(2)弯曲试验;! a3 T$ d; `" W! N9 s* t" R8 h
(3)冲压成形试验;
. E! }9 W- U# |% W+ Q(4)扩口试验;
1 i% C3 e1 X. n8 r+ h7 O$ l: M; {(5)冲击试验。1 \6 J: j1 V  _" ?6 q5 T
对不锈钢钢管的工艺性能进行评价主要有以下几项:
/ m1 u/ i6 w# q- i(1)拉伸试验
) I4 V0 G9 o# o, F7 ?# A  x(2)扩管试验
/ y; O) r& B, a(3)压扁试验. ?2 s+ [+ X  Y; `. k* h6 O! T
(4)压溃试验+ q3 X; h- m! |: w7 ?0 m
(5)弯曲试验) P1 D( |3 H; }
二、焊接性能5 ]. w1 C  F& J2 r" U# F
在不锈钢的应用中对不锈钢结构进行焊接和切割是不可避免的。由于不锈钢本身所具有的特性,与普碳钢相比不锈钢的焊接及切割有着其特殊性,更易在其焊接接头及热影响区(HAZ)产生各种缺陷。焊接时要特别注意不锈钢的物理性质。例如奥氏体型不锈钢的热膨胀系数是低碳钢和高铬系不锈钢的1.5倍;导热系数约是低碳钢的1/3,而高铬系不锈钢的导热系数约是低碳钢的1/2;比电阻是低碳钢的4倍以上,而高铬系不锈钢是低碳钢的3倍。这些条件加上金属的密度、表面张力、磁性等条件都对焊接条件产生影响。
( b7 V: A; I8 y马氏体型不锈钢一般以13%Cr钢为代表。它进行焊接时,由于热影响区中被加热到相变点以上7 g' g2 k+ [3 O/ F0 q
不锈钢的工艺性能(二)
$ v* l  T' Q* z2 I$ ^* X的区域发生γ—α(M)相变,因此存在低温脆性、低温韧性恶化、伴随硬化产生的延展性下降等问题。因而对于一般马氏体型不锈钢焊接时需进行预热,但碳、氮含量低的和使用丁系焊接材料时可不需预热。焊接热影响区的组织通常又硬又脆。对于这个问题,可通过进行焊后热处理使其韧性和延展性得到恢复。另外碳、氮含量最低的牌号,在焊接状态下也有一定的韧性。* i/ n4 `6 I+ o( G
铁素体型不锈钢以18%Cr钢为代表。在含碳量低的情况下有良好的焊接性能,焊接裂纹内敏感性也较低。但由于被加热至900℃以上的焊接热影响区晶粒显著变粗,使得在室温下缺少延伸性和韧性,易发生低温裂纹。也就是说,一般来讲铁素体型不锈钢有475℃脆化、700—800℃长时间加热下发生“相脆性、夹杂物和晶粒粗化引起的脆化、低温脆化、碳化物析出引起耐蚀性下降以及高合金钢中易发生的延迟裂纹等问题。通常应在焊接时进行焊前预热和焊后热处理,并在具有良好韧性的温度范围进行焊接。' k# G4 z/ |( l* l' D
奥氏体型不锈钢以18% Cr—8%Ni钢为代表。原则上不须进行焊前预热和焊后热处理。一般具有良好的焊接性能。但其中镍、钼含量高的高合金不锈钢进行焊接时易产生高温裂纹。另外还易发生σ相脆化,在铁素体生成元素的作用下生成的铁素体引起低温脆化,以及耐蚀性下降和应力腐蚀裂纹等缺陷。经焊接后,焊接接头的力学性能一般良好,但当在热影响区中的晶界上有铬的碳化物时会极易生成贫铬层,而贫铬层的出现将在使用过程中易产生晶间腐蚀。为避免问题的发生,应采用低碳(C≤0.03%)的牌号或添加钛、铌的牌号。为防止焊接金属的高温裂纹,通常认为控制奥氏体中的δ铁素体肯定是有效的。一般提倡在室温下含5%以上的δ铁素体。对于以耐蚀性为主要用途的钢,应选用低碳和稳定的钢种,并进行适当的焊后热处理;而以结构强度为主要用途的钢,不应进行焊接后热处理,以防止变形和由于析出碳化物和发生σ相脆化。7 t4 L, L( {1 ~$ g: @8 h) ]% s. v
双相不锈钢的焊接裂纹敏感性较低。但在热影响区内铁素体含量的增加会使晶间腐蚀敏感性提高,因此可造成耐蚀性降低及低温韧性恶化等问题。' a: ^; e- `; |4 S- U" N
对于沉淀硬化型不锈钢有焊接热影响区发生软化等问题。; f- G% {* e' D# H+ R1 I) E
综上所述,不锈钢的焊接性能主要表现在以下几个方面:
$ L' D$ t: X, t1 f7 ]) s" D(1)高温裂纹:在这里所说的高温裂纹是指与焊接有关的裂纹。高温裂纹可大致分为凝固裂纹、显微裂纹、HAZ(热影响区)的裂纹和再加热裂纹等。
; M3 C0 K0 m( S+ A. j; j(2)低温裂纹:在马氏体型不锈钢和部分具有马氏体组织的铁素体型不锈钢中有时会发生低温裂纹。由于其产生的主要原因是氢扩散、焊接接头的约束程度以及其中的硬化组织,所以解决方法主要是在焊接过程中减少氢的扩散,适宜地进行预热和焊后热处理以及减轻约束程度。% s5 K: o, E7 E: S/ s1 L
(3)焊接接头的韧性:在奥氏体型不锈钢中为减轻高温裂纹敏感性,在成分设计上通常使其中残存有5%—10%的铁素体。但这些铁素体的存在导致了低温韧性的下降。在双相不锈钢进行焊接时,焊接接头区域的奥氏体量减少而对韧性产生影响。另外随着其中铁素体的增加,其韧性值有显著下降的趋势。
, R4 L  E* {5 P: j1 I已证实高纯铁素体型不锈钢的焊接接头的韧性显著下降的原因是由于混入碳、氮、氧的缘故。其中一些钢的焊接接头中的氧含量增加后生成了氧化物型夹杂,这些夹杂物成为裂纹发生源或裂纹传播的途径使得韧性下降。而有一些钢则是由于在保护气体中混入了空气,其中的氮含量增加在基体解理面{100}面上产生板条状Cr2N,基体变硬而使得韧性下降。
2 @, [% T$ F" b(4)σ相脆化:奥氏体型不锈钢、铁素体不锈钢和双相钢易发生σ相脆化。由于组织中析出了百分之几的α相,韧性显著下降。“相一般是在600~900℃范围内析出,尤其在75℃左右最易析出。作为防止”相产生的预防型措施,奥氏体型不锈钢中应尽量减少铁素体的含量。
5 s: v- a% a: `2 l! B(5)475℃脆化,在475℃附近(370—540℃)长时间保温时,使Fe—Cr合金分解为低铬浓度的α固溶体和高铬浓度的α’固溶体。当α’固溶体中铬浓度大于75%时形变由滑移变形转变为孪晶变形,从而发生475℃脆化。
+ \2 p& Q) h4 v4 ^* p. j0 h不锈钢的工艺性能(三)% a2 G1 Z$ v5 `( y& x( l& H
三、切削性能$ r4 O0 y# g- @* B
不同的不锈钢的切削性能有很大的差异。一般所说不锈钢的切削性能比其他钢差,是指奥氏体型不锈钢的切削性能差。这是由于奥氏体不锈钢的加工硬化严重,导热系数低造成的。为此在切削过程中需使用水性切削冷却液,以减少切削热变形。特别是当焊接时的热处理不好时,无论是怎样提高切削精度,其变形也是不可避免的。其他类型如马氏体型不锈钢、铁素体性不锈钢等不锈钢的切削性能只要不是淬火后进行切削,那么与碳素钢没有太大的不同。但两者均是含碳量越高则切削性能越差。沉淀硬化型不锈钢由于其不同的组织和处理方法而显示不同的切削性能,但一般来说其切削性能在退火状态下与同一系列及同一强度的马氏体型不锈钢和奥氏体型不锈钢相同。
/ {% k4 j/ S/ n- W1 C8 T+ f  h* ]欲改善不锈钢的切削性能,与碳素钢一样可通过添加硫、铅、铋、硒和碲等元素来实现。其中添加如硫、硒和碲等元素可减轻工具的磨损,添加铅和铋等元素可改善切削状态。
. n: y' D) _0 I& c9 S8 T虽然添加硫可改善不锈钢的切削性能,但是由于它是以Mns化合物的形式在于钢中,所以使得耐蚀性明显下降。为解决这个问题,通常是添加少量的钼和铜。
. `# \4 T, I0 Y四、淬透性# p0 }1 u7 u$ I# Y3 K
对于马氏体型铬镍不锈钢,一般需进行淬火—回火热处理。在这个过程中不同的合金元素及其添加量对淬火性有不同的影响。; J; p  C* G/ o5 _) D( C' j
对马氏体型不锈钢进行淬火时从925—1075℃温度进行急冷。由于相变速度快,因此无论是油冷还是空冷都可得到充分的硬化。同样在必须进行的回火过程中,由于回火条件的不同可得到大范围的不同力学性能。
, w- s+ d9 f8 E5 a1 i在马氏体铬不锈钢中,由于铬的添加提高铁碳合金的淬透性,因而在需要进行淬火的钢中得到广泛的应用。铬的主要作用是可以降低淬火的临界冷却速度,使钢的淬透性得到明显的提高。从C曲线来看,由于铬的添加使奥氏体发生转变的速度减慢,C曲线明显右移。
: M2 {+ q0 z/ g0 Z在马氏体铬镍不锈钢中,镍的添加可提高钢的淬透性和可淬透性。含铬接近20%的钢中若不添加镍则无淬火能力,添加2%—4%的镍可恢复淬火能力。但其中镍的含量不能过高,否则过高的镍含量不仅会扩大γ相区,而且还会降低Mn温度,这样使钢成为单相奥氏体组织也丧失了淬火能力。选择适当的镍含量,可提高马氏体不锈钢的回火稳定性,并降低回火软化程度。3 M" M5 m6 z/ r' r
另外,在马氏体铬镍不锈钢中添加钼可增加钢的回火稳定性。
9 ?/ i* R, s: o2 d0 F& e, W9 z铁素体型不锈钢虽然由于在高温下不产生奥氏体,因而不能通过进行淬火来实现硬化,但是低铬钢中发生部分马氏体相变。
: q& o3 c, }! I# C( M8 @奥氏体型不锈钢属于Fe—Cr—Ni系和Fe—Cr—Mn系,为奥氏体组织。因此从低温到高温的大的范围内均表现出高的强度和良好的延伸性能。可通过进行从1000℃以上开始的急冷的固溶化处理来得到非磁性的全部奥氏体组织,从而得到良好的耐蚀性和最大的延伸率。
发表于 2006-10-13 10:53:43 | 显示全部楼层 来自: 中国广东珠海
好东西怎么没有人顶,不知那位有钣金设计方面的资料(如折弯,冲孔等在设计中需要注意的)
发表于 2006-11-6 21:56:46 | 显示全部楼层 来自: 中国广东广州
好东东,对认识材料有好处,
发表回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Licensed Copyright © 2016-2020 http://www.3dportal.cn/ All Rights Reserved 京 ICP备13008828号

小黑屋|手机版|Archiver|三维网 ( 京ICP备2023026364号-1 )

快速回复 返回顶部 返回列表