QQ登录

只需一步,快速开始

登录 | 注册 | 找回密码

三维网

 找回密码
 注册

QQ登录

只需一步,快速开始

展开

通知     

全站
4天前
楼主: 江边
收起左侧

[讨论] 卸荷回路分析(积极参与有奖)

[复制链接]
发表于 2007-5-22 22:00:52 | 显示全部楼层 来自: 中国辽宁大连

回复 #25 automation 的帖子

换向阀卸荷回路 M、H和K型中位机能的三位换向阀处于中位时,泵即卸荷,如图所示为采用M型中位机能的电液换向阀的卸荷回路。这种回路切换时压力冲击小,但回路中必须设置单向阀,以使系统能保持0.3MPa左右的压力,供操纵控制油路之用。  c& F6 R( C1 ^6 T" J
因为电液换向阀流量大,用电磁铁已经不能推动其换向,所以用一个小电磁换向阀(导阀)推动主换向阀换向,技术团队画的是内控的,小电磁换向阀(导阀)的P口接在泵出口处,如果没有单向阀,M型换向阀卸荷, P口没有压力就不能使主换向阀换向。单向阀起建立背压作用,应该明白了。

评分

参与人数 1三维币 +5 收起 理由
江边 + 5 鼓励积极参与技术交流,谢谢您的积极参与

查看全部评分

发表于 2007-5-27 08:47:30 | 显示全部楼层 来自: 中国河南安阳
原帖由 奥凯 于 2007-5-22 22:00 发表 http://www.3dportal.cn/discuz/images/common/back.gif1 x6 s! G$ ^% t1 @& y$ B% {. y
换向阀卸荷回路 M、H和K型中位机能的三位换向阀处于中位时,泵即卸荷,如图所示为采用M型中位机能的电液换向阀的卸荷回路。这种回路切换时压力冲击小,但回路中必须设置单向阀,以使系统能保持0.3MPa左右的压力 ...
3 |5 e. g7 m# L! h5 t) ?
' }2 m# [0 Z- X$ y( N( Q% B. d
对上面帖子的补充:6 A3 S: r/ m1 i* |/ b9 t3 N
在中位机能为M、H和K型的内控的电液阀进油口设置预压阀后,回油路中就可以不设置单向阀了。
( I. S4 P: }4 @: b2 _3 D# \) t) v. U; q$ y: _% J7 B# u4 p: q
[ 本帖最后由 9619 于 2007-5-27 08:50 编辑 ]
发表于 2007-6-4 17:05:22 | 显示全部楼层 来自: 中国四川成都
力士乐的A10VSE系列DFR1泵回路就不会有如此复杂的回路,采用功率控制工作是系统的压力为300 bar,泄荷是压力为20-30bAR,由系统提供一个反馈信号给泵,以控制泵和系统的压力!

评分

参与人数 1三维币 +1 收起 理由
江边 + 1 鼓励参与技术交流

查看全部评分

发表于 2007-6-18 23:54:16 | 显示全部楼层 来自: 中国山东临沂

顶,刚来的新手,请多指教
发表于 2007-6-19 01:20:04 | 显示全部楼层 来自: 中国江苏苏州
大家谈的都很有道理,可好象漏了一个卸荷的没有谈到-----就是液压马达,我认为液压马达也是卸荷回路的;
. P1 K' t7 t- Z) O* K$ T- M
液压马达的工作原理8 A2 n  _! K+ I5 _  V. Y+ N; t
常用的液压马达的结构与同类型的液压泵很相似,下面对叶片马达、轴向柱塞马达和摆动马达的工作原理作一介绍。
; N: o# p6 X* r1.叶片马达
4 z) d; e6 J9 y$ e8 Z图4-2所示为叶片液压马达的工作原理图。
3 i/ Z. q7 W7 f6 j; y
图4-2叶片马达的工作原理图
1~7—叶片
当压力为p的油液从进油口进入叶片1和3之间时,叶片2因两面均受液压油的作用所以不产生转矩。叶片1、3上,一面作用有压力油,另一面为低压油。由于叶片3伸出的面积大于叶片1伸出的面积,因此作用于叶片3上的总液压力大于作用于叶片1上的总液压力,于是压力差使转子产生顺时针的转矩。同样道理,压力油进入叶片5和7之间时,叶片7伸出的面积大于叶片5伸出的面积,也产生顺时针转矩。这样,就把油液的压力能转变成了机械能,这就是叶片马达的工作原理。当输油方向改变时,液压马达就反转。/ @- c+ b% I5 A+ d
当定子的长短径差值越大,转子的直径越大,以及输入的压力越高时,叶片马达输出的转矩也越大。" g% m9 J/ L4 ]/ f
在图4-2中,叶片2、4、6、8两侧的压力相等,无转矩产生。叶片3、7产生的转矩为T1,方向为顺时针方向。假设马达出口压力为零,则:
, k, \6 |0 l5 Y! b8 s' E8 p% n

" N" i% s' t3 v, e7 b. G(4-12)
式中:B为叶片宽度;R1为定子长半径;r为转子半径;p为马达的进口压力。
; R; b' y2 ~0 y$ E" f4 J* I叶片1、5产生的转矩为T2,方向为逆时针方向,则:
% z: ~1 _7 \" P9 |7 W: q
! z% ?9 q4 c2 n& u5 A" N
(4-13)
由式(4-12)、式(4-13)看出,对结构尺寸已确定的叶片马达,其输出转矩T决定于输入油的压力。
& Z* B# _2 |5 |- t由叶片泵的理论流量qi的公式:
1 A3 W1 [! I# A- }) l+ {+ g! M. n( B
qi=2πBn(R12-R22)
得:
2 x/ Y* h' l5 U* X$ u( w1 W* Un=qi/2πB(R12-R22)1 `5 Y; U" Q6 x2 i3 Z) j( m
(4-14)
式中:qi为液压马达的理论流量,qi=q·ηv;q为液压马达的实际流量,即进口流量。由式(4-14)看出,对结构尺寸已确定的叶片马达,其输出转速n决定于输入油的流量。+ t, K; F0 Z9 z% |* N1 V
叶片马达的体积小,转动惯量小,因此动作灵敏,可适应的换向频率较高。但泄漏较大,不能在很低的转速下工作,因此,叶片马达一般用于转速高、转矩小和动作灵敏的场合。! `5 {( M* C. l' o- [
2.轴向柱塞马达& v9 ?; f" [. N. l, p1 S
轴向柱塞马达的结构形式基本上与轴向柱塞泵一样,故其种类与轴向柱塞泵相同,也分为直轴式轴向柱塞马达和斜轴式轴向柱塞马达两类。
+ w( O) G" q( v( _( B轴向柱塞马达的工作原理如图4-3所示。
; V1 e: D* m; ^3 P4 w" T
图4-3斜盘式轴向柱塞马达的工作原理图
当压力油进入液压马达的高压腔之后,工作柱塞便受到油压作用力为pA(p为油压力,A为柱塞面积),通过滑靴压向斜盘,其反作用为N。N力分解成两个分力,沿柱塞轴向分力p,与柱塞所受液压力平衡;另一分力F,与柱塞轴线垂直向上,它与缸体中心线的距离为r,这个力便产生驱动马达旋转的力矩。F力的大小为:3 p8 l8 j: Z: i, s
F=pAtanγ
式中:γ为斜盘的倾斜角度(°)。, i" {9 ~8 a# u' {, [- L
这个F力使缸体产生扭矩的大小,由柱塞在压油区所处的位置而定。设有一柱塞与缸体的垂直中心线成φ角,则该柱塞使缸体产生的扭矩T为:8 `9 k' k, U: |5 j* T5 |
8 \! w( l4 {% o+ O4 ~
T=Fr=FRsinφ=pARtanγsinφ' ?% i0 t+ Z4 @: P
(4-15)
式中:R为柱塞在缸体中的分布圆半径(m)。% R  o( ]. c# u6 x; n: F; p
随着角度φ的变化,柱塞产生的扭矩也跟着变化。整个液压马达能产生的总扭矩,是所有处于压力油区的柱塞产生的扭矩之和,因此,总扭矩也是脉动的,当柱塞的数目较多且为单数时,脉动较小。
3 }* f' K6 w. h/ [" S液压马达的实际输出的总扭矩可用下式计算:5 {  a- `7 J3 S
T=ηm·ΔpV/2π
/ K, O! b% P: K; {(4-16)
式中:Δp为液压马达进出口油液压力差(N/m2);V为液压马达理论排量(m3/r);ηm为液压马达机械效率。& C$ K9 t( M3 Z, ?
从式中可看出,当输入液压马达的油液压力一定时,液压马达的输出扭矩仅和每转排量有关。因此,提高液压马达的每转排量,可以增加液压马达的输出扭矩。
4 n9 d0 l; A  o一般来说,轴向柱塞马达都是高速马达,输出扭矩小,因此,必须通过减速器来带动工作机构。如果我们能使液压马达的排量显著增大,也就可以使轴向柱塞马达做成低速大扭矩马达。4 \) l9 J# A+ `; \
1.3 ]1 O3 M" M7 Q; w2 p. d, i, E
1.! i8 @, ~8 T! O" \4 s* c7 z
摆动马达
+ D& i% G) H$ b0 ~- `+ N6 N0 I% R
摆动液压马达的工作原理见图4-4。
" M6 ^2 t% d( N" D; b* e% V : E0 C& h1 n5 m# q  f7 d
图4-4摆动缸摆动液压马达的工作原理图
图4-4(a)是单叶片摆动马达。若从油口Ⅰ通入高压油,叶片2作逆时针摆动,低压力从油口Ⅱ排出。因叶片与输出轴连在一起,帮输出轴摆动同时输出转矩、克服负载。
1 _' n) ?# x" I% N" b此类摆动马达的工作压力小于10MPa,摆动角度小于280°。由于径向力不平衡,叶片和壳体、叶片和挡块之间密封困难,限制了其工作压力的进一步提高,从而也限制了输出转矩的进一步提高。
* N( o0 h7 \: e6 T7 n6 O图4-4(b)是双叶片式摆动马达。在径向尺寸和工作压力相同的条件下,分别是单叶片式摆动马达输出转矩的2倍,但回转角度要相应减少,双叶片式摆动马达的回转角度一般小于120°。
; G5 F  `; n: O' D3 O叶片摆动马达的总效率η=70%~95%,对单叶片摆动马达来说。, |2 `/ k% B2 F+ C; s+ a- d
设其机械效率为1,出口背压为零,则它的输出转矩:  J! p9 }' o1 W  P: F. x
T=PB =P (R22-R12)4 I* C# {3 w- |0 b0 P

; E7 X! z, n4 y7 s+ n) v
式中:P为单叶片摆动马达的进口压力;B为叶片宽度;R1为叶片轴外半径,叶片内半径;R2为叶片外半径。% P, p* P( w+ j- ]7 r
2 j9 U/ o% k* P0 L; I1 b
发表于 2009-6-4 13:14:17 | 显示全部楼层 来自: 中国辽宁大连
我认为卸荷回路是,对油缸、蓄能器和泵等与供能或负载有关的部件卸荷的控制油路的总称。
发表于 2010-8-3 10:23:59 | 显示全部楼层 来自: 中国浙江绍兴
!!如果系统改动的话,成本低的回路就是换向阀的滑阀卸荷(M H)等和电磁溢流阀
发表于 2010-8-4 07:19:32 | 显示全部楼层 来自: 中国辽宁鞍山
1# 江边
1 G4 L4 Y; Y: O$ F# J3 T3 m. o工厂里的卸荷回路,主要是为了安全的目的而设计的。8 a6 {( P5 X+ @
比如液压供油主管道就有一个紧急切断阀台,如果发生严重漏油,着火 事件, 可以及时的切断
发表于 2010-8-4 07:24:23 | 显示全部楼层 来自: 中国辽宁鞍山
换向阀卸荷回路 M、H和K型中位机能的三位换向阀处于中位时,泵即卸荷,如图所示为采用M型中位机能的电液换向阀的卸荷回路。这种回路切换时压力冲击小,但回路中必须设置单向阀,以使系统能保持0.3MPa左右的压力,供 ...; P* ]: j8 B3 U  n. ^& L
奥凯 发表于 2007-5-22 22:00 http://www.3dportal.cn/discuz/images/common/back.gif
比较不错,支持
发表回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则


Licensed Copyright © 2016-2020 http://www.3dportal.cn/ All Rights Reserved 京 ICP备13008828号

小黑屋|手机版|Archiver|三维网 ( 京ICP备2023026364号-1 )

快速回复 返回顶部 返回列表