|

楼主 |
发表于 2009-4-24 10:00:32
|
显示全部楼层
来自: 中国黑龙江佳木斯
初次上传,总照顾不周,决定取消权限
版规也非常仔细看了,但是第一次上传书籍的时候还是丢三落四,照顾及此,丢了彼处。重新回复编辑,取消下载权限的限制,并且重新上传,压缩包内容与一楼完全一样。自己以后也会多学习经验, 并为给论坛管理人员和论坛其他朋友带来的不便,深表歉意。
0 |+ K6 q% r+ C( e! C《Crystals and Crystal Structures》这本书是由Tilley所著,在晶体材料领域影响比较大。这次版本在2006年再次发行。 将其压缩后制作为两个压缩包。 主要目录及封面摘录如下,供大家参考:" [1 f2 ^6 ?. R$ V
Contents7 u" k6 @& C' b+ J
Preface
; _# o9 P( ^ V- _7 m' K1 Crystals and crystal structures
! Q$ f" N. Y5 x0 M1 U l1.1 Crystal families and crystal systems
g; n5 e; [% A" I P1.2 Morphology and crystal classes
) O3 y: k9 t# G9 p- ?% K- H! g% U1.3 The determination of crystal structures/ J7 P, R4 c/ \6 Z+ F
1.4 The description of crystal structures
+ a8 T, |6 J9 I& H! U$ N1.5 The cubic close-packed (A1) structure of copper' N9 v4 f! p) a1 A
1.6 The body-centred cubic (A2) structure of tungsten$ X: ? ~" @9 L% B
1.7 The hexagonal (A3) structure of magnesium1 O3 G7 j, _: P6 }9 r, _
1.8 The halite structure2 x0 C) m- H: j6 c" r+ \
1.9 The rutile structure# c$ g7 \" R; M) Q( `* M6 W
1.10 The fluorite structure
3 y8 S" M4 l* W4 s1.11 The structure of urea0 i6 O7 @6 C# f; v
1.12 The density of a crystal
6 u8 j2 D& \$ p# I! NAnswers to introductory questions4 M0 `/ d0 _3 p
Problems and exercises1 Q/ N" @ T" J' [- N3 O! k
2 Lattices, planes and directions; s0 j& R, H* f+ }$ \; O1 M
2.1 Two-dimensional lattices5 {5 W( u! T9 a0 O3 c6 W0 T
2.2 Unit cells, y% o- H m# K) d ~. E
2.3 The reciprocal lattice in two dimensions
5 Y" c4 [. n+ D( v2.4 Three-dimensional lattices
" Q, P6 N& b4 B$ e/ T2.5 Alternative unit cells# |6 b. s, E4 d# }% z2 s& X2 d
2.6 The reciprocal lattice in three dimensions
' I+ f4 d. L5 B* `& Y6 V2.7 Lattice planes and Miller indices7 y$ y# `3 x2 V. ~ _! b
2.8 Hexagonal lattices and Miller-Bravais indices
) C5 k7 p. L- a. R2.9 Miller indices and planes in crystals
8 v# x3 F9 M2 S' M$ E2.10 Directions7 B) a. u) C" c' m% H+ a3 ^' H
2.11 Lattice geometry
0 K6 U3 H; t- `; C6 J2 NAnswers to introductory questions
# E3 [7 R" N( _) Q, L( g+ hProblems and exercises " D" {+ w; L0 d" V6 Z
3 Two-dimensional patterns and tiling7 y$ |) B! b+ Q" R% D6 Q3 e* @
3.1 The symmetry of an isolated shape: point symmetry+ P+ ^# q5 m+ e, U
3.2 Rotation symmetry of a plane lattice
- N/ h2 _ ^) x+ U# L5 G' }/ |3.3 The symmetry of the plane lattices o1 `$ U* e+ w" T4 N5 D
3.4 The ten plane crystallographic point symmetry groups6 g7 K" |4 _' @- u
3.5 The symmetry of patterns: the 17 plane groups
7 [/ i8 @) j0 I: z# n( f: `* N3.6 Two-dimensional ‘crystal structures’0 z) y8 O8 J* C0 w5 k2 n: N$ p
3.7 General and special positions; ^6 h O M, P" d0 X! v1 F
3.8 Tesselations
2 v8 R7 R$ z. v/ LAnswers to introductory questions
: P; v1 b7 I5 o$ N5 D3 MProblems and exercises
5 Y* Y4 K$ }& o0 _4 Symmetry in three dimensions/ x) g* e, G: Q0 Y3 f/ a% G: |3 M
4.1 The symmetry of an object: point symmetry
7 D9 i. W! M" s- f# L9 b4.2 Axes of inversion: rotoinversion
+ [7 Z2 x' D5 b9 }5 ~7 j4.3 Axes of inversion: rotoreflection7 }4 |8 s0 q' D9 |9 P/ w- {) T3 V
4.4 The Hermann-Mauguin symbols for point groups
+ w8 u/ b# a2 k" X! h# B6 o4.5 The symmetry of the Bravais lattices; H' F1 l; a( K( T% l8 L* k- {8 r% D
4.6 The crystallographic point groups
4 i8 x/ Y7 b2 n3 q; N4.7 Point groups and physical properties" K+ K' u; g7 y5 o
4.8 Dielectric properties! ^4 o7 Y4 T$ B; Y5 T
4.9 Refractive index4 _5 {. A8 f4 P t
4.10 Optical activity
( b8 v2 ~! I" i, V3 B8 {9 |4.11 Chiral molecules% B. `+ v& n* Q, F8 z/ x
4.12 Second harmonic generation* B" G( y6 N4 |9 l
4.13 Magnetic point groups and colour symmetry" j4 p2 t* n8 |: x
Answers to introductory questions
: j+ h2 v4 J0 y9 cProblems and exercises. M. i. S' x+ X- U
5 Building crystal structures from lattices and space groups: q3 y* \7 {/ `% c& _5 n
5.1 Symmetry of three-dimensional patterns: space groups# R8 D4 b! J: `$ a- O
5.2 The crystallographic space groups
$ K8 x, C. Z3 f: W5.3 Space group symmetry symbols
. N9 a! `7 {/ ]( F# K' o5.4 The graphical representation of the space groups
7 ^2 S" ]7 q" m0 }9 l5.5 Building a structure from a space group7 v6 V# W8 o: Z: q+ F5 Q
5.6 The structure of diopside, CaMgSi2O6
0 Y$ K- x2 w5 u5.7 The structure of alanine, C3H7NO2
1 U9 C {4 G* Q* zAnswers to introductory questions+ j, J. ~# H, {8 p$ v
Problems and exercises
, t8 J0 F, [% {) o6 Diffraction and crystal structures
: s' ?6 ^$ p6 G( u6.1 The position of diffracted beams: Bragg’s law" g- r) I3 a4 G, Q8 w- H& |7 V; E" p
6.2 The geometry of the diffraction pattern' k& p/ R+ a' I3 w' x2 g
6.3 Particle size
; r6 @9 i- p/ Q& j. _6.4 The intensities of diffracted beams3 ~' X: S, L5 ^: q, S
6.5 The atomic scattering factor
$ m1 |$ _8 `4 M, r! D$ o6.6 The structure factor
/ \6 F+ O5 g0 R# ^5 E, m. I6.7 Structure factors and intensities
) i2 K5 n8 M0 J; }' g9 x6.8 Numerical evaluation of structure factors
) H+ n- _5 f. S2 h/ t# G, x0 ~6.9 Symmetry and reflection intensities- l* o- q4 ^% ?) T( S' a; G
6.10 The temperature factor
% `9 P) O0 S! n" k% p6 o# l! X6.11 Powder X-ray diffraction/ T# J$ V7 F5 K5 I# R
6.12 Electron microscopy and structure images) R3 m( i: _& c( c f3 s
6.13 Structure determination using X-ray diffraction3 [" Q/ q. j `
6.14 Neutron diffraction. J% V; R+ S+ C" f* C) `( J8 x
6.15 Protein crystallography
6 s0 w9 M+ S) s& H! g+ `( u6.16 Solving the phase problem
" y& k; w$ @5 d5 i6.17 Photonic crystals
: o9 O6 @# u9 g+ OAnswers to introductory questions
- a( \+ Y4 Z% M8 {4 QProblems and exercises" m6 P* q$ q2 Y, a9 v |, {
7 The depiction of crystal structures) {" l; H/ ?; o9 Q" D1 e
7.1 The size of atoms( a# t' e3 D; @/ h6 R
7.2 Sphere packing6 F: H J6 x3 s. a2 t/ M
7.3 Metallic radii" C; i) n8 A& V0 p+ a+ ^; l
7.4 Ionic radii; n: `1 O" ^+ ]1 }$ {! k% Y/ k
7.5 Covalent radii
6 a* e [6 U* ~2 ?2 J7.6 Van der Waals radii
$ y/ A e7 G/ ?# Z; T7.7 Ionic structures and structure building rules# ]7 g) i$ s7 s
7.8 The bond valence model
" J3 C: b/ y; X/ m+ R. U7.9 Structures in terms of non-metal (anion) packing) S4 b$ X4 B% {' G r
7.10 Structures in terms of metal (cation) packing( e* w/ C1 w U7 a
7.11 Cation-centred polyhedral representations of crystals
+ Q# ` X7 Z+ M0 c; w" ~7.12 Anion-centred polyhedral representations of crystals9 I; [* f9 p$ M( f% f; M
7.13 Structures as nets
( d- x) y% K7 w l, e3 P3 I7.14 The depiction of organic structures
# Y2 M. y( Z3 B) h7.15 The representation of protein structures
6 L. l$ m6 X. j& sAnswers to introductory questions
- I& n' M- ~$ a4 L6 ~ u- N, ?Problems and exercises
4 Q* a9 w7 \( j( t+ g. q7 [, A8 Defects, modulated structures and quasicrystals
, J# x% [+ K: d' \8.1 Defects and occupancy factors! i0 m& N! \, p& C) r- v5 Y% X
8.2 Defects and unit cell parameters2 b* d! _3 H4 R9 `: U" `
8.3 Defects and density
; C4 J% R# ]1 `# g8.4 Modular structures
S/ B8 d2 d. W# P# \8.5 Polytypes
4 ]7 D/ \8 e' Z5 A3 g8.6 Crystallographic shear phases
* ^; V) z" u( G/ E0 b8.7 Planar intergrowths and polysomes
4 Q C# n8 `. C& f; w; @- C5 s8.8 Incommensurately modulated structures
# a5 J7 L8 S; g, [1 t+ P- N; M8.9 Quasicrystals$ N2 R, q! U1 F- d0 S
Answers to introductory questions" f0 ^+ B6 g! X) b' l
Problems and exercises
# O9 u, P0 H; Y3 n' h) T4 wAppendices- u5 K/ U5 s+ g( U9 g' u. W
Appendix 1 Vector addition and subtraction2 A! [: A7 {! I6 h. l) j" J4 Z% c, ~$ ~
Appendix 2 Data for some inorganic crystal structures r# @( F2 m" a2 @/ e |
Appendix 3 Schoenflies symbols
% i7 ^& ?5 ?) ]2 Q; }Appendix 4 The 230 space groups' X% ^( H+ D6 f" X
Appendix 5Complex numbers9 _* v$ W; _8 n. k
Appendix 6Complex amplitudes
% M3 j& j2 X; p, t5 {3 W- DAnswers to problems and exercises" q I- M8 t. s( {, k
Bibliography* H( a9 |( J3 t7 n% L) }8 B5 X8 B
Formula index
" y9 v* s& O, u5 D! V) m! Q! @- A4 cSubject index |
|