QQ登录

只需一步,快速开始

登录 | 注册 | 找回密码

三维网

 找回密码
 注册

QQ登录

只需一步,快速开始

展开

通知     

查看: 1577|回复: 0
收起左侧

[书籍] Solid–Liquid Two Phase Flow《固液两相流体》08英文PDF新书

 关闭 [复制链接]
发表于 2008-7-3 09:10:30 | 显示全部楼层 |阅读模式 来自: 中国山东德州

马上注册,结识高手,享用更多资源,轻松玩转三维网社区。

您需要 登录 才可以下载或查看,没有帐号?注册

x
书名:Solid–Liquid Two Phase Flow* X% A! W1 D/ L- B5 O
作者:Sümer M. Peker
% E" I3 e& [& L, I4 v; `7 l+ M发行:Elsevier3 s+ J! e) A. |5 g1 ^. X0 ?( ^" a
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
1 n2 ]$ D# k: T; OLinacre House, Jordan Hill, Oxford OX2 8DP, UK
$ _& p8 G" w2 `9 B$ E* k
页数:535$ |! _3 p' D" q- c8 o
ISBN:978-0-444-52237-5
, y, n/ t  Y" t, S. u/ G" x) s共3个压缩卷,解压后6.09M& q; Q# w% b0 F) t" F; |
主要内容:
! P/ M9 y1 z# p* G+ lBeing an ‘underpinning technology’, fluid flow closely reflects and sometimes precedes
: m) J" H$ j9 ^, c5 |6 Q9 xthe developments of the ‘core technologies’ of the time. Only in the second half of 19th8 R1 k; P/ b+ Q2 R# m
century that the term ‘two-phase flow’ was pronounced and added as a chapter to fluid
: d2 P7 j3 J+ x- L( K3 vmechanics and unit operations books. At that time, two-phase flow term was used predominantly: o2 ]( A& @4 i8 i, W" L8 n& Q4 Q
to denote gas–liquid flow, which is not coincidental, as the leading technologies7 D: c3 J# f$ w3 y
were nuclear and thermal, addressing mainly vapor–liquid systems.
. _4 E/ i3 j3 a  l# Z; x
目录5 l. e3 H! d5 s4 H; C2 b8 e, A  a
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii
% ?) Q' B# {' T2 r6 kList of Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii# a: U" P+ U$ U* c5 W5 d$ D$ O
1 The Particulate Phase: A Voyage from the Molecule to the Granule. . . . . . . . . . . . .  1+ d$ F- L) v9 y8 Z. T% w
1.1 Molecular Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
! i$ ^+ Y0 {# D4 D2 E1.1.1 Attractive forces among molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
( {% D. O" `/ k! ?5 E1.1.2 Repulsive forces among molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
' {1 i$ ~2 w; K& {) J! _1 E% @. C1.2 Interactions of Electrical Origin Between Particles. . . . . . . . . . . . . . . . . . . . . . . . .  6+ d. {, L) C6 N& ~2 ?  ^
1.2.1 Attractions between particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
* z& |  v' s7 W5 L1.2.2 Ionic interactions between charged surfaces . . . . . . . . . . . . . . . . . . . . . . . .  9
, ^; ]0 w3 p; M& ?0 Q, _2 U1.2.3 The DLVO theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
3 G; `5 Y1 @3 Y: j; P! |1.3 Interaction of Particles due to Non-DLVO Forces. . . . . . . . . . . . . . . . . . . . . . . . . .  17( u' t+ L1 i% a' o# A: D1 Y( s2 m
1.3.1 Forces of entropic origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
) W4 b% e2 v7 g$ o1.3.2 Forces of energetic origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
! y: R5 C" k! y4 b3 L1.4 Aggregation of Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
, x9 h! E! s2 U+ r0 o# |1 T+ }/ A1.4.1 Kinetics of aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
2 s. B- ?; H. K- |! _3 B6 d$ \) R1.4.2 Structure of aggregates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27) o4 `4 C! g+ N! S9 F( T
1.4.3 Role of polymers and polyelectrolytes on the coagulation of suspensions. . 32
  B; n9 d3 w4 t% y# K8 y0 Y7 ~1.5 Aggregation of Ferromagnetic Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  367 k6 ^5 q/ r& K! ?" h2 i
1.5.1 Effect of the direction of the magnetic field on the aggregate structure . . . .  382 B6 j, [6 @6 ?/ e3 W6 g
1.5.2 Reversibility of aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38$ x5 X) B* s1 s, t
1.5.3 Light-induced aggregation of ferrofluids. . . . . . . . . . . . . . . . . . . . . . . . . . .  39( S- [8 x, k% t" p- u
1.6 Formation of Glasses and Gels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
9 d0 e. Z3 P1 E7 N: N" ]' d. F/ f1 S3 t1.6.1 The glassy state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404 Q0 T7 `3 d+ g. s, K1 l0 C
1.6.2 Formation of gels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41  g/ T# N9 g2 A* ~  i- T4 ~8 S& q
1.7 Self-Assemblies of Surfactants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
% T8 Q. c6 j/ `& ~, V0 b1.7.1 Thermodynamics of self-assembly of surfactants . . . . . . . . . . . . . . . . . . . .  45  {5 s1 g- p  _7 Z4 T. [. i
1.7.2 Self-assemblies in solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46# R  [, s8 O6 p- D& M7 d
1.7.3 Self-assemblies on solid surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49/ n9 V7 y9 K# D# w
1.8 Stabilization of Suspensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
" l6 r; }* [9 v$ e6 k. F6 Q: k% i1.8.1 Stabilization by surfactants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
( K8 l7 ^1 \, n$ @4 e; a6 {1.8.2 Stabilization by polymers and polyelectrolytes . . . . . . . . . . . . . . . . . . . . . .  55
1 X8 z' Z3 q( _, d1.8.3 Stabilization by nanoparticles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  580 h( L& w6 g( |4 _
1.9 Aggregation in Biological Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  592 Q/ e( i/ e" Q1 ?+ S* D6 }* J
1.9.1 Aggregation behavior of blood cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59
% x. ^9 ]" o) T' L- ^1 E1.9.2 Aggregation of microorganisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
( b1 K* j1 L2 i4 e. F2 Non-Newtonian Behavior of Solid–Liquid Suspensions . . . . . . . . . . . . . . . . . . . . . . .  71
# o& e  r" f8 X. n# R2.1 Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71$ D1 k1 f( f* k8 X# z. V2 a
2.1.1 Effect of viscoelasticity on flow behavior . . . . . . . . . . . . . . . . . . . . . . . . . .  72, X- E4 v+ T- l! h: H
2.1.2 Assessment of viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75) ]6 L0 D8 @8 b
2.1.3 Dynamic methods in the assessment of viscoelasticity . . . . . . . . . . . . . . . .  76" _& y9 W' |3 a/ [) W: b2 G
2.2 Rheological Models of Time-Independent Non-Newtonian Fluids . . . . . . . . . . . . .  86+ S6 Q, S! `8 D( K1 y
2.2.1 Models which describe the rheological behavior with a . X: D( p3 k3 @% Q2 e- K
viscosity function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
8 V# |) X& [3 u7 V4 @0 F+ H7 W2.2.2 Models for fluids with a yield stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  908 J( H. f! U4 d/ w6 L
2.2.3 Models for specific end-use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92
; I0 b# D* F3 ^* F5 B3 u2 T* e2.2.4 Significance of the terms used in the constitutive equations . . . . . . . . . . . . 945 z. Q4 Z9 r1 ?/ l- s9 T4 d3 K
2.3 Flow of Non-Newtonian Fluids through Cylindrical Pipes . . . . . . . . . . . . . . . . . . .  95
5 J3 }9 ^4 c  \2.3.1 Laminar flow of non-Newtonian fluids. . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
( M) M  l' G3 v0 K/ T' J/ t2.3.2 Turbulent flow of non-Newtonian fluids . . . . . . . . . . . . . . . . . . . . . . . . . . .  1212 ~0 O9 @# o5 n& v' K6 Q5 z
2.3.3 Flow through sudden expansions and fittings . . . . . . . . . . . . . . . . . . . . . . . 135% r; _4 w3 L4 G# b- g4 A& L
2.4 Flow through Noncylindrical Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141
/ w3 c9 z' e1 W$ X2.4.1 Flow through annular channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
/ l3 n: w4 A6 B  L4 c* g" U, i& |2.4.2 Flow through rectangular channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1530 C& u' f% N/ {+ ^" _
2.4.3 Flow in microchannels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157' ?( N( Y8 i$ s7 A% Y  P' I  }
2.4.4 Flow in open channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

- [  F3 @! [+ h# l . . . . . . . . . .  
! g. ?7 y+ d( B7 o' o: P3 ]8 Classification and Separation of Solid–Liquid Systems . . . . . . . . . . . . . . . . . . . . . . .  4398 A5 H$ P% k2 O0 w3 ^3 g
8.1 Classification and Separation in a Gravitational Field. . . . . . . . . . . . . . . . . . . . . . .  439) l( J/ _0 z6 x  {9 T+ _7 h
8.1.1 Sedimentation as a separation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4405 A2 p, F0 b* Q, c5 T0 @+ U
8.1.2 Fluidization as a separation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4431 Q3 d, c& ?  H3 g- x3 o- J
8.1.3 Classification in hydrocyclones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4480 w4 B. u8 W5 Q7 z
8.2 Separation in a Magnetic Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4579 X/ A$ {8 b4 P5 W! g9 j
8.2.1 Separation of magnetic particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
) m9 q% [9 D4 t8 g0 T6 b( E$ G: L& c8.2.2 Separation of nonmagnetic particles in a magnetic medium . . . . . . . . . . . . 459
9 M/ F0 `+ |5 k3 S6 x! ]8.3 Separations in the Microscale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4597 d7 N0 W$ k4 D9 K8 p. p' T6 f
8.3.1 Field flow fractionation techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460: l/ k8 \" M3 d
8.3.2 Separations in flow through microfluidic bifurcations. . . . . . . . . . . . . . . . .  460
9 Y& V2 }- H7 ^6 P% |8.3.3 Ultrasonic separations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461) e: {: y% {1 ^! @
8.3.4 Separations based on magnetic properties. . . . . . . . . . . . . . . . . . . . . . . . . . 465
3 R8 T: r3 B; {9 ]4 X* v4 Q5 N8.3.5 Separations based on electrical properties. . . . . . . . . . . . . . . . . . . . . . . . . . 466
1 p  ^, y  |7 j9 Q+ |. WAppendix A Mathematical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  471
9 a% _2 U- J8 |% T7 K4 N- fAppendix B Population Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  493
' h: F, h4 j& v& q6 J  D9 Z- `Appendix C Tables for Use in Plug Flow in an Annulus . . . . . . . . . . . . . . . . . . . . . . . . . . . .  503
3 W  [3 v3 O& j4 n0 C0 w. d: Z' jIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  509
+ z7 S' |  Z, K  q' J, z
1.JPG

Solid–Liquid Two Phase Flow.part1.rar

1.91 MB, 下载次数: 29

Solid–Liquid Two Phase Flow.part2.rar

1.91 MB, 下载次数: 23

Solid–Liquid Two Phase Flow.part3.rar

1.04 MB, 下载次数: 24

评分

参与人数 1三维币 +15 收起 理由
云动风清 + 15 好资料,感谢对论坛的支持!

查看全部评分

发表回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Licensed Copyright © 2016-2020 http://www.3dportal.cn/ All Rights Reserved 京 ICP备13008828号

小黑屋|手机版|Archiver|三维网 ( 京ICP备2023026364号-1 )

快速回复 返回顶部 返回列表