|
发表于 2010-4-8 01:28:19
|
显示全部楼层
来自: 加拿大
请参考陶显芳老师的博客
) O. W- ]* I3 V) z" o1 X( Z. T+ {% S
5 B2 H- `2 E( J. p$ |从原理上来说,磁珠可等效成一个电感,所以磁珠在EMI和EMC电路中就相当于一个抑制电感的作用,主要是对高频传导干扰信号进行抑制。
( h) ^" w5 t1 g2 r* |* e9 Q5 P$ {, z! z0 Y) h5 ]8 V
磁珠可等效成一个电感,但这个等效电感与电感线圈是有区别的,磁珠与电感线圈的最大区别就是,电感线圈有分布电容。因此,电感线圈就相当于一个电感与一个分布电容并联。8 D9 X" r! i2 Q0 w6 w" ~
3 a* D/ F ~- R2 U' S. L5 a理论上对传导干扰信号进行抑制,要求抑制电感的电感量越大越好,但对于电感线圈来说,电感量越大,则电感线圈的分布电容也越大,两者的作用将会互相抵消。
5 ?( o E' |! A8 {8 J! t如果我们还要对抑制频率进一步提高,那么我们最后选用的电感线圈就只好是它的最小极限值,只有1圈或不到1圈了。磁珠,即穿心电感,就是一个匝数小于1圈的电感线圈。但穿心电感比单圈电感线圈的分布电容小好几倍到几十倍,因此,穿心电感比单圈电感线圈的工作频率更高。8 s, J4 B& w0 ?, u, J% n) H! P
9 ~1 a8 x& G$ Z/ a5 \9 K+ y
穿心电感的电感量一般都比较小,大约在几微亨到几十微亨之间,电感量大小与穿心电感中导线的大小以及长度,还有磁珠的截面积都有关系,但与磁珠电感量关系最大的还要算磁珠的相对导磁率。* }0 @8 }, Q, `% I
另外,当穿心电感的工作频率很高时,在磁珠体内还会产生涡流,这相当于穿心电感的导磁率要降低,此时,我们一般都使用有效导磁率。有效导磁率就是在某个工作频率之下,磁珠的相对导磁率。但由于磁珠的工作频率都只是一个范围,因此在实际应用中多用平均导磁率。
& [ w* ?% y9 w) {在低频时,一般磁珠的相对导磁率都很大(大于100),但在高频时其有效导磁率只有相对导磁率的几分之一,甚至几十分之一。因此,磁珠也有截止频率的问题,所谓截止频率,就是使磁珠的有效导磁率下降到接近1时的工作频率fc,此时磁珠已经失去一个电感的作用。一般磁珠的截止频率fc都在30~300MHz之间,截止频率的高低与磁珠的材料有关,一般导磁率越高的磁芯材料,其截止频率fc反而越低,因为低频磁芯材料涡流损耗比较大。使用者在进行电路设计的时候,可要求磁芯材料的提供商提供磁芯工作频率与有效导磁率
" ?& A2 @6 g! @* s的测试数据,或穿心电感在不同工作频率之下的曲线图。
- ^: i, R. N& [, G0 o磁珠另一个用途就是用来做电磁屏蔽,它的电磁屏蔽效果比屏蔽线的屏蔽效果还要好,这是一般人不太注意的。其使用方法就是让一双导线从磁珠中间穿过,那么当有电流从双导线中流过时,其产生的磁场将大部份集中在磁珠体内,磁场不会再向外辐射;由于磁场在磁珠体内会产生涡流,涡流产生电力线的方向与导体表面电力线的方向正好相反,互相可以抵消,因此,磁珠对于电场同样有屏蔽作用,即:磁珠对导体中的电磁场有很强的屏蔽作用。6 \ F8 h0 F# b( T+ O2 x2 K
9 l' X; x2 y/ z4 Z8 k使用磁珠进行电磁屏蔽的优点是磁珠不用接地,可以免去屏蔽线要求接地的麻烦。用磁珠作为电磁屏蔽,对于双导线来说,还相当于在线路中接了一个共模抑制电感,对共模干扰信号有很强的抑制作用。
9 I( M& @8 j3 |
0 S9 Y5 |0 S( r* y2 s" r由此可知,电感线圈主要是用于对低频干扰信号进行EMI抑制,而磁珠主要是对高频干扰信号进行EMI抑制,因此,对一个频带很宽的干扰信号进行EMI抑制,必须同时采用多个不同性质的电感才会有效。另外,对共模传导干扰信号进行EMI抑制,还要注意抑制电感与Y电容的连接位置。Y电容和抑制电感尽量靠近电源的输入端,即电源插座的位置,并且高频电感要尽量靠近Y电容,而Y电容还要尽量靠近与大地连接的地线(三心电源线的地线),这对EMI抑制才有效。 |
评分
-
查看全部评分
|