QQ登录

只需一步,快速开始

登录 | 注册 | 找回密码

三维网

 找回密码
 注册

QQ登录

只需一步,快速开始

展开

通知     

全站
11天前
查看: 1965|回复: 2
收起左侧

[书籍] 很有名的 英文版 Tilley_Crystals and Crystal Structures

 关闭 [复制链接]
发表于 2009-4-23 14:57:01 | 显示全部楼层 |阅读模式 来自: 中国黑龙江佳木斯

马上注册,结识高手,享用更多资源,轻松玩转三维网社区。

您需要 登录 才可以下载或查看,没有帐号?注册

x
《Crystals and Crystal Structures》由 Tilley  所著,在晶体研究领域影响很大。

Tilley_Crystals and Crystal Structures.part1.rar

1.95 MB, 阅读权限: 30, 下载次数: 3

Tilley_Crystals and Crystal Structures.part2.rar

1.29 MB, 阅读权限: 30, 下载次数: 3

评分

参与人数 1三维币 +20 收起 理由
云动风清 + 20 好资料,感谢您对论坛的支持!

查看全部评分

 楼主| 发表于 2009-4-24 09:33:08 | 显示全部楼层 来自: 中国黑龙江佳木斯

修改后《Crystals and Crystal Structures》[PDF+书签] Tilley

《Crystals and Crystal Structures》[PDF+书签] Tilley
) r& X. v& m( }Contents2 a3 ]5 @: ?2 t9 ]; I& _/ l
Preface
1 d- ^" f1 ~- r  i; I* V, v' y" n1 Crystals and crystal structures
5 G1 b( r6 d$ u1.1 Crystal families and crystal systems- F3 k3 B# H, B2 T+ ?9 v3 T3 v" T( F
1.2 Morphology and crystal classes
# _7 ^+ o$ y6 W' Z- Q1.3 The determination of crystal structures/ K& R+ x" k1 a$ J
1.4 The description of crystal structures6 `! W8 b; ]# F5 M1 q- }! J5 @
1.5 The cubic close-packed (A1) structure of copper
2 Y" c; y% q9 `' x' f$ c, Z1.6 The body-centred cubic (A2) structure of tungsten4 ]0 n  X3 j* e* L4 v
1.7 The hexagonal (A3) structure of magnesium
9 p9 I0 t; K% m1 e1.8 The halite structure7 C  p8 ]. _( r' Q/ W. }' V
1.9 The rutile structure
+ S1 t; {( _7 Z1 |1.10 The fluorite structure
9 V$ a) E% [: V) n* b& d1.11 The structure of urea
3 j, p3 d" f' a! {1.12 The density of a crystal0 }7 w1 R6 C# O/ e6 t
Answers to introductory questions
/ c' W7 A% |- ?: sProblems and exercises
( k' Z' D2 R* @7 g' I  t2  Lattices, planes and directions
% F, D1 R. x3 P2.1 Two-dimensional lattices
6 W. |! ~: T7 @1 M0 a2.2 Unit cells
7 Z, }' V! ~7 l% ~* n2.3 The reciprocal lattice in two dimensions
- b5 e" q8 M) h) p# R0 R8 n2.4 Three-dimensional lattices9 L( V; Z& ?0 q8 X
2.5 Alternative unit cells4 z* e. |& u  i4 |* N5 h
2.6 The reciprocal lattice in three dimensions6 c1 |0 N, i  ?, ^5 o) {2 \; |( P
2.7 Lattice planes and Miller indices
; B  E% i$ E6 \& O2.8 Hexagonal lattices and Miller-Bravais indices* _9 ?+ F2 V( Q% O' T! L$ u4 L
2.9 Miller indices and planes in crystals* ]) L( _9 D! S/ r
2.10 Directions
4 u7 m9 r. U  [2 m1 O% N2.11 Lattice geometry% k! T! K1 J; g
Answers to introductory questions( |8 O# H7 |6 C; P; H$ W! N/ S
Problems and exercises * R* Y! q/ R0 h- E9 w6 X
3 Two-dimensional patterns and tiling
5 y; B! v5 |2 t% W  q, ]3.1 The symmetry of an isolated shape: point symmetry
4 n& F" e" ?! K3.2 Rotation symmetry of a plane lattice' u6 T8 T7 x  F! h$ j- ^7 j
3.3 The symmetry of the plane lattices1 C) {+ ?2 h7 w8 t
3.4 The ten plane crystallographic point symmetry groups
; k) d& g) q& m% g, S5 x3.5 The symmetry of patterns: the 17 plane groups
, b" m7 r* v1 A" b& Y' Q3.6 Two-dimensional ‘crystal structures’6 J9 A* d4 z  f3 x# k  v6 I; g
3.7 General and special positions
! ?# f  O4 a. H% R  q& ~3.8 Tesselations6 V3 ^( F( F% ]' u9 T6 {! s) ~' D
Answers to introductory questions# I" ~/ u- k( z! ^
Problems and exercises
% @2 @# h% K9 C- z8 t4  Symmetry in three dimensions% x/ h( l  r9 x  B1 Z3 ^6 v
4.1 The symmetry of an object: point symmetry/ o, q/ P; X: Z+ ]) O! g
4.2 Axes of inversion: rotoinversion
* i; Y, }. t1 f/ T! N5 O5 S7 o  }2 b4.3 Axes of inversion: rotoreflection1 S, |8 u6 O4 I  o: |6 E
4.4 The Hermann-Mauguin symbols for point groups# D0 W9 Q' p3 }2 w! U) V
4.5 The symmetry of the Bravais lattices9 L/ f8 U5 b. ]  V" w" _
4.6 The crystallographic point groups3 r& F. }9 S- x0 [- d, ^" A
4.7 Point groups and physical properties7 D3 F& E3 \2 W! N# P
4.8 Dielectric properties
- h* Z& d' u) T- z$ k% D4.9 Refractive index
& F: F$ W0 X7 u# Q' p4.10 Optical activity7 J& t4 ~7 z* ^7 }( W
4.11 Chiral molecules# s: N' ^7 M# X
4.12 Second harmonic generation
3 W, t  o2 Y+ ]4.13 Magnetic point groups and colour symmetry
& ?% n  S8 c: Z6 wAnswers to introductory questions! F+ ~5 R# h: v& J' R
Problems and exercises
/ s3 l+ t+ Q7 h* ?8 V6 }; i5  Building crystal structures from lattices and space groups2 t* l2 U6 Q( Y1 U0 b, a1 M" d
5.1 Symmetry of three-dimensional patterns: space groups. w0 ]* A$ e) p5 H- ^* l5 y' o
5.2 The crystallographic space groups- y' u% F4 ~6 I/ O
5.3 Space group symmetry symbols. f9 q# p" x' N3 d" k. u  T
5.4 The graphical representation of the space groups
" z' @( N* D" z" u5.5 Building a structure from a space group
' T8 D) C) D1 T7 A1 B5.6 The structure of diopside, CaMgSi2O6
# G5 }- G$ Q0 i8 ?. y7 q5.7 The structure of alanine, C3H7NO2. h4 s. [4 k) N3 u4 p4 I( w2 C2 S
Answers to introductory questions
7 B4 l6 K7 D- ^Problems and exercises
; A' n9 G/ G/ P5 f  _0 w- t6$ v7 }7 V3 P& B) Y
Diffraction and crystal structures
5 C( B' _' o: ?% ]. V; A3 f1 z* u
6.1 The position of diffracted beams: Bragg’s law
* R3 i. Q8 U( o. d  ?/ f9 r  [6.2 The geometry of the diffraction pattern# X" H- b+ q. _& M6 p' f% T
6.3 Particle size, j# p7 }' z2 p) z
6.4 The intensities of diffracted beams
4 j4 r8 M9 u# e; t9 q! n9 b& j* N9 A6.5 The atomic scattering factor
6 m) ^5 D& f/ P7 ~6.6 The structure factor2 ^# q8 Z, P- v1 n$ t
6.7 Structure factors and intensities% f5 y# ~- G/ S$ G9 k9 O
6.8 Numerical evaluation of structure factors4 w+ b: \# H- X0 H/ z/ Z5 O
6.9 Symmetry and reflection intensities
1 q; H9 n6 w3 i! I# B6.10 The temperature factor9 v# l9 ^/ i8 ^& P& h; R; L
6.11 Powder X-ray diffraction
) U# _. I- S. d5 X, D6.12 Electron microscopy and structure images
, n3 f5 z: A8 H+ ?7 W4 ]4 \' [6.13 Structure determination using X-ray diffraction
& f4 F4 `9 V! V5 {% q6.14 Neutron diffraction
6 o- u8 S6 k1 Z8 {0 t" J6.15 Protein crystallography6 F- G3 F# E% s8 C" j% L
6.16 Solving the phase problem
, T* Q% Z, }* _' Z6.17 Photonic crystals* k- t" A' K8 W& o. f
Answers to introductory questions* ?( _* r* D+ W; a+ o* M/ u0 X
Problems and exercises( [, x( ^3 P$ C5 D6 U
7  The depiction of crystal structures
% r0 W9 Z) J  q: b2 e7.1 The size of atoms
5 Z: i/ E9 t0 p/ A! J7.2 Sphere packing
+ r. J" D) L: B7.3 Metallic radii
6 h( }4 V/ A5 z6 n, f7.4 Ionic radii
/ m2 ~: A/ s6 U5 a$ f6 n7.5 Covalent radii
1 ]8 O- M* G0 M  e1 q5 ?8 u1 C7.6 Van der Waals radii
0 ^! O+ e. n' K7.7 Ionic structures and structure building rules
" Q9 j. }0 q  E  ^/ n7.8 The bond valence model
5 J7 F; Y" F* k  W( k7.9 Structures in terms of non-metal (anion) packing
/ t  _1 x1 _9 A' v; ]  G$ }7.10 Structures in terms of metal (cation) packing! Y& V9 {7 r* t1 U9 R/ N& L
7.11 Cation-centred polyhedral representations of crystals' C5 a% H8 x: B. \' t8 [
7.12 Anion-centred polyhedral representations of crystals
4 D3 f+ a7 F. N, K3 L  o7.13 Structures as nets. u0 D. U& Q9 }+ M: m/ L  \
7.14 The depiction of organic structures
- K7 a6 F; M: a$ H# B" I9 \0 B+ }7.15 The representation of protein structures
/ o+ K# m( C3 @; k& y; Z" lAnswers to introductory questions8 G) @7 T' \1 d, F+ l; F* f
Problems and exercises
, x" B' g0 V6 J+ v: G8   Defects, modulated structures and quasicrystals
6 y9 C% ~/ S( p' f3 f$ @8 D8.1 Defects and occupancy factors
6 A( e. L/ g, C9 I/ r+ _5 \) s" v8.2 Defects and unit cell parameters- _, L+ p0 n& z5 {% w/ p
8.3 Defects and density+ \$ E& A6 o; E" ]$ d3 b; |9 b. b+ |7 i
8.4 Modular structures
7 v1 d' B" z% T1 k4 d8 @8.5 Polytypes
2 l3 J$ \$ y: C9 E* _8 O8.6 Crystallographic shear phases& N4 T9 L, N* D  U3 [
8.7 Planar intergrowths and polysomes
" n5 ]! n- W7 T4 X8.8 Incommensurately modulated structures2 A& M. Z7 m. Y; N6 {
8.9 Quasicrystals
2 L9 b4 B1 ?( o" C" lAnswers to introductory questions
  r1 y) o% N/ L$ ?% AProblems and exercises
* H9 b. ?; O- wAppendices
/ K  Z0 x: H, C! j+ |( Y4 nAppendix 1 Vector addition and subtraction6 ~8 A, D( P7 r5 M) v
Appendix 2 Data for some inorganic crystal structures
7 ]/ F3 ?5 h. R& TAppendix 3 Schoenflies symbols2 y( Q9 q& ]$ X4 i4 y
Appendix 4 The 230 space groups. e  j/ q' u+ c* w  X
Appendix 5 Complex numbers
, L/ u0 `  [+ `: YAppendix 6 Complex amplitudes
8 D# [& v  j, Y" c( t9 b, ]4 iAnswers to problems and exercises
' d- O4 {4 N( s/ ^/ a  oBibliography
7 O* X& Y& v3 v* y4 XFormula index" {9 q& U2 l) _/ y7 k
Subject index
# |, i7 @( i7 x' V
image001.jpg
 楼主| 发表于 2009-4-24 10:00:32 | 显示全部楼层 来自: 中国黑龙江佳木斯

初次上传,总照顾不周,决定取消权限

版规也非常仔细看了,但是第一次上传书籍的时候还是丢三落四,照顾及此,丢了彼处。重新回复编辑,取消下载权限的限制,并且重新上传,压缩包内容与一楼完全一样。自己以后也会多学习经验, 并为给论坛管理人员和论坛其他朋友带来的不便,深表歉意。
# B* s& L; E8 \- C《Crystals and Crystal Structures》这本书是由Tilley所著,在晶体材料领域影响比较大。这次版本在2006年再次发行。  将其压缩后制作为两个压缩包。 主要目录及封面摘录如下,供大家参考:; s5 a8 J+ T: \0 `
Contents! D; e* ^0 p0 d4 M& p% m9 S
Preface
# x) f) P! Q% i, N; F0 T2 C+ F% T5 i3 V1   Crystals and crystal structures$ Z. m( @1 K8 |9 N
1.1 Crystal families and crystal systems
7 d$ z$ J# ?- l4 v7 o% J1.2 Morphology and crystal classes
; f' |3 j! T9 k6 ?1 L1.3 The determination of crystal structures) E4 t4 }" ^# T4 H
1.4 The description of crystal structures
6 k2 A/ Q1 ^1 k5 L4 _1.5 The cubic close-packed (A1) structure of copper4 Y. R+ K3 k" E$ v# V- Y
1.6 The body-centred cubic (A2) structure of tungsten
( _+ P0 K: N  U* f7 B' |7 d1.7 The hexagonal (A3) structure of magnesium
2 f$ ~' z& E4 k8 A1.8 The halite structure* ?! Z. R* J) r' S! f& R
1.9 The rutile structure  b" o3 p# N) C: j4 }+ z- `
1.10 The fluorite structure
4 ~2 p; w/ S- Y$ l1.11 The structure of urea- p) u1 i3 l2 q: c! g
1.12 The density of a crystal+ E  A5 _" M( d1 {8 t2 Q
Answers to introductory questions
- D5 @+ \' |+ ?) b4 k. UProblems and exercises+ J& _; E! E# F& ~
2   Lattices, planes and directions9 b1 u1 f1 _0 [. I# Q; x& a% j( J+ D
2.1 Two-dimensional lattices- F& c' u2 W% z: Z  B) J
2.2 Unit cells& E& |! l- H; J6 _, u. g' A$ z
2.3 The reciprocal lattice in two dimensions* \. u4 G5 v8 q) D8 K
2.4 Three-dimensional lattices
. j& ^0 B7 A8 J5 N7 }2.5 Alternative unit cells, Y/ G7 P; Y8 }6 x3 _$ I
2.6 The reciprocal lattice in three dimensions
4 r8 m, h6 i( A/ t& O  _2.7 Lattice planes and Miller indices6 b3 h+ v5 U. J1 {* G- f4 [
2.8 Hexagonal lattices and Miller-Bravais indices
/ @5 C, w4 `* f! j" j3 p4 B' w2.9 Miller indices and planes in crystals
& g) h1 a- d3 K* a* {2.10 Directions
9 C  O7 R$ f( r7 r$ V4 R0 a4 Z: V2.11 Lattice geometry6 L9 h  j+ H: ^2 K  a
Answers to introductory questions% w" R2 G& W/ |# D2 {
Problems and exercises 3 z* T& F9 R; K. S8 c
3   Two-dimensional patterns and tiling
# J' W- M* B, o( ]/ p3.1 The symmetry of an isolated shape: point symmetry
: r) l- ]" L9 C$ Y( U  J3.2 Rotation symmetry of a plane lattice+ [5 K5 x/ D3 N4 O8 s
3.3 The symmetry of the plane lattices
& H7 S; \/ ]& Q6 o3.4 The ten plane crystallographic point symmetry groups, K) Z% c7 T, \4 J) R) r4 g/ V" _
3.5 The symmetry of patterns: the 17 plane groups! T9 D+ j2 W: `* Z
3.6 Two-dimensional ‘crystal structures’3 O$ ^0 T/ o* Q" d4 U
3.7 General and special positions
6 M1 f: {7 a  m2 r: q7 w: v3.8 Tesselations
. \; ]% v! I7 F6 N, [! i( N- IAnswers to introductory questions
; z3 W9 Y- O' r1 f7 u, rProblems and exercises7 {3 b- N- L, E" V2 v$ k9 W
4   Symmetry in three dimensions
$ K: o8 N5 K9 E1 u' A+ w4 o' X4.1 The symmetry of an object: point symmetry* ], z( h$ T6 I2 j! E8 ?0 _0 B
4.2 Axes of inversion: rotoinversion
0 }2 o7 k( d5 m4.3 Axes of inversion: rotoreflection* J9 s) Q7 B& {- G6 B% b. l! t
4.4 The Hermann-Mauguin symbols for point groups
) M$ [" c7 j4 y2 D1 R4.5 The symmetry of the Bravais lattices. |- `  {/ t9 @2 o6 n# t
4.6 The crystallographic point groups3 \) ^7 y$ j, [
4.7 Point groups and physical properties
7 I+ I  v# K" O* X4.8 Dielectric properties- s9 V2 w: C# d- p1 m$ _
4.9 Refractive index. [6 _* _+ r/ i8 X
4.10 Optical activity) ?8 T; |5 {( D; q& J
4.11 Chiral molecules
% A# ]+ u/ D8 [9 o0 Y, l4.12 Second harmonic generation
( y9 @8 I2 l' y5 ]4.13 Magnetic point groups and colour symmetry& y6 E0 I- X; ~
Answers to introductory questions
- j/ C! |2 m  \$ N! ]Problems and exercises+ Z! P4 N; T$ J! U. o" w) n
5   Building crystal structures from lattices and space groups
; O! O* g$ |  [  t5.1 Symmetry of three-dimensional patterns: space groups, j6 R$ B% @/ d5 t$ W2 S+ F3 Z
5.2 The crystallographic space groups) p* |0 k! c* x' y5 {+ {
5.3 Space group symmetry symbols! {' d% l' ?( ?  o
5.4 The graphical representation of the space groups. B* e6 G  S: f
5.5 Building a structure from a space group
6 W/ R' P4 }( [* B$ N5.6 The structure of diopside, CaMgSi2O6
, R0 O5 I, I' w5.7 The structure of alanine, C3H7NO2$ v8 k* [% D1 g' O1 P- U
Answers to introductory questions
# T) F! q" s# R! }* t6 s9 lProblems and exercises
. Z4 [& a, h7 q$ h- b; G6   Diffraction and crystal structures# l- {+ ]/ g1 Z3 \
6.1 The position of diffracted beams: Bragg’s law4 h, H5 o- |/ X1 M" f0 ~5 {
6.2 The geometry of the diffraction pattern9 {+ L' S& B7 W: p* p4 i
6.3 Particle size7 l5 I0 r5 V3 ?0 D! o; M6 Q
6.4 The intensities of diffracted beams
  B- N/ s( |, R! s+ N. q! n/ s6.5 The atomic scattering factor$ j- L' U2 a: n0 Q6 h7 p
6.6 The structure factor; @+ x7 T6 V: B0 B& ?! a
6.7 Structure factors and intensities
3 M: ]$ C2 t( q; Y$ _" w6.8 Numerical evaluation of structure factors5 f$ ]1 k5 \: Q1 Y9 v5 G5 v
6.9 Symmetry and reflection intensities- E! I4 H3 I6 N" r4 \9 N8 [( z
6.10 The temperature factor
6 Y4 _8 V/ e4 F1 y, `6.11 Powder X-ray diffraction6 B  [- _  }- g" q  y  K
6.12 Electron microscopy and structure images
, ~! {$ h  C% \3 m4 v, E6.13 Structure determination using X-ray diffraction
9 c  P3 m9 b' b, `  u# t, r6.14 Neutron diffraction
' E) l: `! @4 Z# m( h9 t8 F6.15 Protein crystallography
" x4 \" q% K- p! L* @2 S6.16 Solving the phase problem9 v6 ]* l, Y0 _- ]6 `+ @
6.17 Photonic crystals
  |, Q; Z. B3 \; ]Answers to introductory questions6 M- i2 T- Z9 Y# U+ \5 J
Problems and exercises
5 g8 Q! s2 Q" y  ]% _. t4 Z7   The depiction of crystal structures* D4 ?. x9 x4 s. |# A
7.1 The size of atoms
7 [) F" w) @# O; {7.2 Sphere packing! m) c/ B! _  `: j$ l
7.3 Metallic radii# ?( e# |3 w% m% e3 A# {4 F/ A
7.4 Ionic radii
4 [1 w. W3 v% t0 `6 @7.5 Covalent radii
* q+ c9 [& ?* K( A2 \# E7.6 Van der Waals radii
% u5 k  y: q( k4 z+ e: ?7.7 Ionic structures and structure building rules2 l. M& D- ~5 Z: p% X
7.8 The bond valence model
# h) m$ s3 R! p5 V) i% I. W& v7.9 Structures in terms of non-metal (anion) packing
% Q% P5 `( u  S% h4 p: s: C7.10 Structures in terms of metal (cation) packing
7 k8 a) f8 I) S0 K4 c& M7.11 Cation-centred polyhedral representations of crystals" Y# c0 u; Q3 {& B4 s  q1 S% m: a' z! T
7.12 Anion-centred polyhedral representations of crystals# W! e5 \/ A2 e9 |3 s
7.13 Structures as nets1 M1 i" X' a1 P& f
7.14 The depiction of organic structures
4 ], R& N; {- ~  P6 F/ S7.15 The representation of protein structures5 }+ f6 |, A# [0 u
Answers to introductory questions
7 i$ r3 r" z7 n( VProblems and exercises" g3 Y% v7 a* n$ L
8  Defects, modulated structures and quasicrystals; }4 d. D" \, L  R$ t' h7 s
8.1 Defects and occupancy factors
4 H' R' N  t& J# u) T( R- {8.2 Defects and unit cell parameters
6 N9 h5 b6 e* x" D0 S8.3 Defects and density
0 S: _9 G: ~  p) y0 r4 S1 b8.4 Modular structures: D( t1 ~! k7 m: {: C% l) T
8.5 Polytypes2 C- H" D- U; N
8.6 Crystallographic shear phases: W- h7 T' k# _5 Y5 T. R, a& `$ K
8.7 Planar intergrowths and polysomes
' X4 \/ H8 p: R1 E) ]8.8 Incommensurately modulated structures8 |% r2 D3 z' d9 n# ~1 P4 b% o
8.9 Quasicrystals4 `* U9 y, O( ]4 [
Answers to introductory questions" {3 G) C, |* b. z+ {. [& D# P
Problems and exercises
: X$ V! k+ ^# |7 q( p2 a# }- WAppendices
. _: W# r" {6 E- Q" Y' w2 ^& KAppendix 1 Vector addition and subtraction  c( g3 I4 r) l9 |+ I8 `% W
Appendix 2 Data for some inorganic crystal structures
0 @" X0 r) o+ P! n- ~3 EAppendix 3 Schoenflies symbols5 t$ r1 w+ v! J. n
Appendix 4 The 230 space groups, e2 h/ `. D5 }
Appendix 5Complex numbers
3 Y" y1 `* u( X4 w+ ^Appendix 6Complex amplitudes$ d. v& S5 q% K
Answers to problems and exercises
5 X3 v2 ~4 D4 D3 Z* ABibliography
9 R6 x1 ?% r' {% X9 _Formula index0 k3 ~6 G& j3 O
Subject index
封面.jpg

《Crystals and Crystal Structures》.part1.rar

1.95 MB, 下载次数: 7

《Crystals and Crystal Structures》.part2.rar

1.29 MB, 下载次数: 7

发表回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Licensed Copyright © 2016-2020 http://www.3dportal.cn/ All Rights Reserved 京 ICP备13008828号

小黑屋|手机版|Archiver|三维网 ( 京ICP备2023026364号-1 )

快速回复 返回顶部 返回列表