|

楼主 |
发表于 2009-4-24 09:33:08
|
显示全部楼层
来自: 中国黑龙江佳木斯
修改后《Crystals and Crystal Structures》[PDF+书签] Tilley
《Crystals and Crystal Structures》[PDF+书签] Tilley
) r& X. v& m( }Contents2 a3 ]5 @: ?2 t9 ]; I& _/ l
Preface
1 d- ^" f1 ~- r i; I* V, v' y" n1 Crystals and crystal structures
5 G1 b( r6 d$ u1.1 Crystal families and crystal systems- F3 k3 B# H, B2 T+ ?9 v3 T3 v" T( F
1.2 Morphology and crystal classes
# _7 ^+ o$ y6 W' Z- Q1.3 The determination of crystal structures/ K& R+ x" k1 a$ J
1.4 The description of crystal structures6 `! W8 b; ]# F5 M1 q- }! J5 @
1.5 The cubic close-packed (A1) structure of copper
2 Y" c; y% q9 `' x' f$ c, Z1.6 The body-centred cubic (A2) structure of tungsten4 ]0 n X3 j* e* L4 v
1.7 The hexagonal (A3) structure of magnesium
9 p9 I0 t; K% m1 e1.8 The halite structure7 C p8 ]. _( r' Q/ W. }' V
1.9 The rutile structure
+ S1 t; {( _7 Z1 |1.10 The fluorite structure
9 V$ a) E% [: V) n* b& d1.11 The structure of urea
3 j, p3 d" f' a! {1.12 The density of a crystal0 }7 w1 R6 C# O/ e6 t
Answers to introductory questions
/ c' W7 A% |- ?: sProblems and exercises
( k' Z' D2 R* @7 g' I t2 Lattices, planes and directions
% F, D1 R. x3 P2.1 Two-dimensional lattices
6 W. |! ~: T7 @1 M0 a2.2 Unit cells
7 Z, }' V! ~7 l% ~* n2.3 The reciprocal lattice in two dimensions
- b5 e" q8 M) h) p# R0 R8 n2.4 Three-dimensional lattices9 L( V; Z& ?0 q8 X
2.5 Alternative unit cells4 z* e. |& u i4 |* N5 h
2.6 The reciprocal lattice in three dimensions6 c1 |0 N, i ?, ^5 o) {2 \; |( P
2.7 Lattice planes and Miller indices
; B E% i$ E6 \& O2.8 Hexagonal lattices and Miller-Bravais indices* _9 ?+ F2 V( Q% O' T! L$ u4 L
2.9 Miller indices and planes in crystals* ]) L( _9 D! S/ r
2.10 Directions
4 u7 m9 r. U [2 m1 O% N2.11 Lattice geometry% k! T! K1 J; g
Answers to introductory questions( |8 O# H7 |6 C; P; H$ W! N/ S
Problems and exercises * R* Y! q/ R0 h- E9 w6 X
3 Two-dimensional patterns and tiling
5 y; B! v5 |2 t% W q, ]3.1 The symmetry of an isolated shape: point symmetry
4 n& F" e" ?! K3.2 Rotation symmetry of a plane lattice' u6 T8 T7 x F! h$ j- ^7 j
3.3 The symmetry of the plane lattices1 C) {+ ?2 h7 w8 t
3.4 The ten plane crystallographic point symmetry groups
; k) d& g) q& m% g, S5 x3.5 The symmetry of patterns: the 17 plane groups
, b" m7 r* v1 A" b& Y' Q3.6 Two-dimensional ‘crystal structures’6 J9 A* d4 z f3 x# k v6 I; g
3.7 General and special positions
! ?# f O4 a. H% R q& ~3.8 Tesselations6 V3 ^( F( F% ]' u9 T6 {! s) ~' D
Answers to introductory questions# I" ~/ u- k( z! ^
Problems and exercises
% @2 @# h% K9 C- z8 t4 Symmetry in three dimensions% x/ h( l r9 x B1 Z3 ^6 v
4.1 The symmetry of an object: point symmetry/ o, q/ P; X: Z+ ]) O! g
4.2 Axes of inversion: rotoinversion
* i; Y, }. t1 f/ T! N5 O5 S7 o }2 b4.3 Axes of inversion: rotoreflection1 S, |8 u6 O4 I o: |6 E
4.4 The Hermann-Mauguin symbols for point groups# D0 W9 Q' p3 }2 w! U) V
4.5 The symmetry of the Bravais lattices9 L/ f8 U5 b. ] V" w" _
4.6 The crystallographic point groups3 r& F. }9 S- x0 [- d, ^" A
4.7 Point groups and physical properties7 D3 F& E3 \2 W! N# P
4.8 Dielectric properties
- h* Z& d' u) T- z$ k% D4.9 Refractive index
& F: F$ W0 X7 u# Q' p4.10 Optical activity7 J& t4 ~7 z* ^7 }( W
4.11 Chiral molecules# s: N' ^7 M# X
4.12 Second harmonic generation
3 W, t o2 Y+ ]4.13 Magnetic point groups and colour symmetry
& ?% n S8 c: Z6 wAnswers to introductory questions! F+ ~5 R# h: v& J' R
Problems and exercises
/ s3 l+ t+ Q7 h* ?8 V6 }; i5 Building crystal structures from lattices and space groups2 t* l2 U6 Q( Y1 U0 b, a1 M" d
5.1 Symmetry of three-dimensional patterns: space groups. w0 ]* A$ e) p5 H- ^* l5 y' o
5.2 The crystallographic space groups- y' u% F4 ~6 I/ O
5.3 Space group symmetry symbols. f9 q# p" x' N3 d" k. u T
5.4 The graphical representation of the space groups
" z' @( N* D" z" u5.5 Building a structure from a space group
' T8 D) C) D1 T7 A1 B5.6 The structure of diopside, CaMgSi2O6
# G5 }- G$ Q0 i8 ?. y7 q5.7 The structure of alanine, C3H7NO2. h4 s. [4 k) N3 u4 p4 I( w2 C2 S
Answers to introductory questions
7 B4 l6 K7 D- ^Problems and exercises
; A' n9 G/ G/ P5 f _0 w- t6$ v7 }7 V3 P& B) Y
Diffraction and crystal structures5 C( B' _' o: ?% ]. V; A3 f1 z* u
6.1 The position of diffracted beams: Bragg’s law
* R3 i. Q8 U( o. d ?/ f9 r [6.2 The geometry of the diffraction pattern# X" H- b+ q. _& M6 p' f% T
6.3 Particle size, j# p7 }' z2 p) z
6.4 The intensities of diffracted beams
4 j4 r8 M9 u# e; t9 q! n9 b& j* N9 A6.5 The atomic scattering factor
6 m) ^5 D& f/ P7 ~6.6 The structure factor2 ^# q8 Z, P- v1 n$ t
6.7 Structure factors and intensities% f5 y# ~- G/ S$ G9 k9 O
6.8 Numerical evaluation of structure factors4 w+ b: \# H- X0 H/ z/ Z5 O
6.9 Symmetry and reflection intensities
1 q; H9 n6 w3 i! I# B6.10 The temperature factor9 v# l9 ^/ i8 ^& P& h; R; L
6.11 Powder X-ray diffraction
) U# _. I- S. d5 X, D6.12 Electron microscopy and structure images
, n3 f5 z: A8 H+ ?7 W4 ]4 \' [6.13 Structure determination using X-ray diffraction
& f4 F4 `9 V! V5 {% q6.14 Neutron diffraction
6 o- u8 S6 k1 Z8 {0 t" J6.15 Protein crystallography6 F- G3 F# E% s8 C" j% L
6.16 Solving the phase problem
, T* Q% Z, }* _' Z6.17 Photonic crystals* k- t" A' K8 W& o. f
Answers to introductory questions* ?( _* r* D+ W; a+ o* M/ u0 X
Problems and exercises( [, x( ^3 P$ C5 D6 U
7 The depiction of crystal structures
% r0 W9 Z) J q: b2 e7.1 The size of atoms
5 Z: i/ E9 t0 p/ A! J7.2 Sphere packing
+ r. J" D) L: B7.3 Metallic radii
6 h( }4 V/ A5 z6 n, f7.4 Ionic radii
/ m2 ~: A/ s6 U5 a$ f6 n7.5 Covalent radii
1 ]8 O- M* G0 M e1 q5 ?8 u1 C7.6 Van der Waals radii
0 ^! O+ e. n' K7.7 Ionic structures and structure building rules
" Q9 j. }0 q E ^/ n7.8 The bond valence model
5 J7 F; Y" F* k W( k7.9 Structures in terms of non-metal (anion) packing
/ t _1 x1 _9 A' v; ] G$ }7.10 Structures in terms of metal (cation) packing! Y& V9 {7 r* t1 U9 R/ N& L
7.11 Cation-centred polyhedral representations of crystals' C5 a% H8 x: B. \' t8 [
7.12 Anion-centred polyhedral representations of crystals
4 D3 f+ a7 F. N, K3 L o7.13 Structures as nets. u0 D. U& Q9 }+ M: m/ L \
7.14 The depiction of organic structures
- K7 a6 F; M: a$ H# B" I9 \0 B+ }7.15 The representation of protein structures
/ o+ K# m( C3 @; k& y; Z" lAnswers to introductory questions8 G) @7 T' \1 d, F+ l; F* f
Problems and exercises
, x" B' g0 V6 J+ v: G8 Defects, modulated structures and quasicrystals
6 y9 C% ~/ S( p' f3 f$ @8 D8.1 Defects and occupancy factors
6 A( e. L/ g, C9 I/ r+ _5 \) s" v8.2 Defects and unit cell parameters- _, L+ p0 n& z5 {% w/ p
8.3 Defects and density+ \$ E& A6 o; E" ]$ d3 b; |9 b. b+ |7 i
8.4 Modular structures
7 v1 d' B" z% T1 k4 d8 @8.5 Polytypes
2 l3 J$ \$ y: C9 E* _8 O8.6 Crystallographic shear phases& N4 T9 L, N* D U3 [
8.7 Planar intergrowths and polysomes
" n5 ]! n- W7 T4 X8.8 Incommensurately modulated structures2 A& M. Z7 m. Y; N6 {
8.9 Quasicrystals
2 L9 b4 B1 ?( o" C" lAnswers to introductory questions
r1 y) o% N/ L$ ?% AProblems and exercises
* H9 b. ?; O- wAppendices
/ K Z0 x: H, C! j+ |( Y4 nAppendix 1 Vector addition and subtraction6 ~8 A, D( P7 r5 M) v
Appendix 2 Data for some inorganic crystal structures
7 ]/ F3 ?5 h. R& TAppendix 3 Schoenflies symbols2 y( Q9 q& ]$ X4 i4 y
Appendix 4 The 230 space groups. e j/ q' u+ c* w X
Appendix 5 Complex numbers
, L/ u0 ` [+ `: YAppendix 6 Complex amplitudes
8 D# [& v j, Y" c( t9 b, ]4 iAnswers to problems and exercises
' d- O4 {4 N( s/ ^/ a oBibliography
7 O* X& Y& v3 v* y4 XFormula index" {9 q& U2 l) _/ y7 k
Subject index
# |, i7 @( i7 x' V |
-
|