|

楼主 |
发表于 2009-4-16 11:40:06
|
显示全部楼层
来自: 中国浙江温州
和氧化铝相象,氮化硅在比硬质合金能承受的温度更高的条件下维持良好的红硬性,并且它能承受的热冲击和机械冲击更好。同氧化铝相比它的主要缺点是加工钢件时化学稳定性没有氧化铝好。尽管如此,氮化硅能以线速度每分钟435米干式加工灰铸铁,氮化硅通常被用于加工这样的工件。
- m* Q$ m4 Q# L
+ c, b& i5 \, d2 t 虽然使用陶瓷刀具金属切除率能很高,但应用必须是正确的。举例讲,陶瓷刀具加工铝并不好,但加工灰铸铁、球墨铸铁、淬硬钢和某些未淬硬钢以及耐热合金等效果很好。但是即使是在这些材料里,用得是否成功取决于刃口修磨、刀具对工件的表现、机床和夹具的稳定性、使用正确的操作和优化的加工参数。# ]- R J5 |9 U) U0 J- C& Z, \
0 T+ S2 N1 _( d CBN,硬度排在金刚石之后。CBN是一种仅次于金刚石的极硬的刀具材料,通常材料硬度大于洛氏硬度48时工作最好(加工软材料时CBN磨损很快)。温度高到摄氏2000度是还有极佳的红硬性。虽然和硬质合金相比更脆且导热性和化学稳定性低于陶瓷,但它有比陶瓷刀具更高的冲击强度和抗破裂性而且对于刚性较低的机床也能切削硬金属。更进一步,恰当的定制CBN刀具能承受大功率粗加工的切削载荷、断续切削的击打和精加工所需的热和磨损性能。+ R& F! g5 }5 Z
9 |1 l+ K1 L& j. ^ 对于指定工序恰当的定制包括机床和夹具的刚性、刃口修磨大到足以防止显微剥落,而且刀具的基体是一种CBN含量高的材质等级。CBN含量高的材质等级对这些指定工序是必须的,因为它们具有刃口重载条件下高速加工要求的高导热性和韧性以及用于严重断续切削。这些性能使得这种材质等级的刀具材料被用作粗加工淬硬钢和珠光体灰铸铁。
% @6 y! G, G. a* a1 w' v
! p" {& U( P a CBN含量低的材质等级和CBN含量高的相比更脆,但它们用于淬硬黑色金属加工更好。它们的更低的热导性和相对更高的承受高速切削和负前角所产生热量的抗压强度。切削区更高的温度软化工件材料和帮助断屑,而负前角强化刀具,使切削刃稳定,提高刀具寿命,并允许比0.25毫米小的切深。8 L: P4 \* m4 t- }: @
5 V% A6 v. Y( L. O5 \6 U
因为CBN刀具能获得优于0.4微米的表面光洁度并保持同轴度正负0.012毫米,干车淬硬工件通常是一种有吸引力的替代肮脏的强化冷却的磨削加工方案。虽然CBN是一种硬车和高速铣特别喜欢的刀具材料,但陶瓷和CBN的应用范围有惊人的重叠,故而很必要用成本-效益分析来决定谁能得到最优结果。& Q7 Z2 L- b4 L5 I4 _, d+ \% x
1 I) X9 T1 L- e9 s
PCD加工有色金属表现突出。作为目前最硬的切削刀具材料,合成聚晶金刚石承受磨料磨损最佳。其硬度和耐磨性来自晶体各向异性和金刚石颗粒之间牢固结合阻止破裂扩展。把PCD刀头焊到硬质合金刀片上增加强度和抗冲击性并能延长刀具寿命高达100倍。+ R# ]( `0 |3 r* `, j" Y6 x
8 n% a& b w0 k3 n' g 然而,其它特性阻止它使用在多数加工操作上。其一是PCD和黑色金属里的铁有亲合性,由此而来的化学反应使得这种刀具材料限制在有色金属应用上。另外一个受限制的特性是它无法承受超过600摄氏度的切削区温度。结果是PCD不能切韧的抗拉强度高的工件材料。
- G: k1 ^" U1 z& I. e5 U! |% x% C+ I/ Q
尽管这样,PCD加工有色金属时表现很好,最突出的是在加工耐磨高硅铝合金时。锋利的切削刃和大正前角对高效地剪切这种材料和切削力最小化以及抑制积屑瘤来说是关键的。在加工耐磨有色金属材料所表现出化学稳定性高和耐磨性好,它能保持利于剪切所必须的锋利切削刃。
1 a6 }: K) e+ i4 a3 R' c3 H9 |* M1 c$ K; E; E) C0 x: M$ z" s# |" B
强化切削刃,减轻载荷
: B8 D$ [' D: P$ g/ Y# v" M% }& [) b- I
尽管自从推出后它们的物理性能提高以及应用领域的发展,由金属陶瓷、陶瓷、CBN、PCD做成的刀具仍然比硬质合金更脆并且不能承受同样大的应力。因此,由它们做成的刀具需设计成能增强支撑和释放应力。& a# q" _# m D2 b( V/ c: v
! X- q, `2 \9 B$ m 一个设计这种刀具的重要部分是切削刃的磨削,它使得切削力偏离刀片刃口改变方向到它的基体。三个这样的刃口修磨是恰当的:负倒棱、珩磨、珩磨的负倒棱。负倒棱象切削刃的一个倒角状的平面,它取代薄弱锋利的刀尖。这里刀具设计人员的目标是发现使保证切削刃足够的强度和寿命的最小带宽和角度,因为宽度和角度增大后刀片得到强化但也增加了切削力。1 g1 w) } Q4 x( N
0 ]0 E8 w% e" N' G6 _9 |( m
珩磨用于钝化锋利的切削刃。虽然它们不提供象负倒棱相同的抗微崩保护作用,但珩磨对由先进材料制作的小切深小进给以保持最小切削力的精加工刀片很有效。珩磨也能强化前、后刀面相交处负倒棱的作用。当用陶瓷粗车钢件发生微崩时,珩磨能释放该处的应力、强化刀片而不要加宽负倒棱。7 @9 G( W9 T3 o/ L$ x$ z
a( q1 I% H* M7 _% @, Z& U1 o
除了指定针对某个加工的最佳刃口修磨,刀具设计人员也必须优化切削角度并能排屑。通过加大后角降低切削力让刀具上的应力减少并降低切削区的温度。正前角的数值尽可能大,靠更好的剪切作用也减少切削力并加宽卷屑槽空间靠加大排出路径帮助切屑排出,特别是在钻削和螺纹加工时。
; T0 ~8 a/ K9 e0 X/ ?5 K6 a- M; s0 x- p' p7 [( y2 M
保持低的切向切削力的另一种方法是高速切削。在很高主轴转速下的高进给率降低而不是增加对工件的冲击多达75%到90%,这取决于刀具和加工参数。更进一步,干加工改善切削过程的热稳定性;铣刀比五年前至少有更准确的大小;而且现代铣削和车削机床变得刚性越好足以消除过度的振动。所有这些发展都支持使用脆但更硬更耐磨的刀具材料。
+ V3 _% l- Y0 b' x+ f& D$ `+ i. ]: e* S3 k4 r/ j9 B
使用一种能承受高温的刀具的好处之一是切屑形成十分有效。举例来讲,加工铸铁时热量增加切削区材料的塑性并降低它的屈服强度。其结果是金属切除率比传统粗加工增加3倍。因为进给率高,刀具剪切切屑快以致大部分热留在切屑里而没有时间流向工件并引起扭曲。尽管切削温度很高,但工件的热稳定性更好而且要比在传统金属切除率条件下更精确。4 @- z: \. L6 G# B/ f9 P: T
, R' ?1 T- q, y7 i
低冲击的精加工也使工件、夹具和机床以及在高线速度下以每转更低的进给使用安装小刀片低密度材料的刀盘的静态变形达到最小。因为支撑工件只需很低的夹紧力,所以夹具能做得简单,不需要一个加强筋、工件支撑和夹紧元件的复杂系统。结果是机床对箱体零件的各个面进刀更多。 |9 V. ^- F6 _ G3 N
9 n3 X) r, I% t% E; R+ Z2 z 是不是机床喜欢干加工9 ]$ k- D; V1 ]* P8 Y) k
5 Y' v1 d6 G i; t6 f
指定和装备合适的机床也是这个战略的一个重要部分。由于速度通常很快、材料通常很硬、切削温度很高,所以机床一定要刚性好功率大。因此,对加工中心讲使用者应该努力缩短刀具悬伸并除了看速度和功率显示外还要判断主轴内在刚性。
: R x" l4 M1 g
& I: m% w" V3 V9 } 在车床上切削接近成型的和淬硬的零件,解决了切削力问题后刀塔能靠机床刚性实现很长的切削行程。一台设计良好的机床将解决那些沿着短的直接通路的力并且包含尽可能少的移动和支撑刀具的机床零件。在权衡精度和柔性后,你也许认为直接装在横刀架的刀具组能消除回转分度机构。这种设计使刀具悬伸短,平衡作用到导轨上的切削力并使支撑面最小化。
, g7 E: x! N0 E9 s9 D
# r/ c% i4 B- d& r& Z& M 对精度来说热稳定性也是关键的。所以一些机床制造商用软件补偿热膨胀的办法改进他们的加工中心的机械部分性能。然而,控制温度变化将开始有效地外排热切屑来消除工作系统内部的重要热源。好的机床设计将没有积聚切屑的腔和托盘而是有不靠切削液帮助就能排出干切屑螺旋推运器和切屑运送装置。如果流体的协助是必需的话,考虑使用空气替代流体。8 d7 v5 u% \+ \2 t" L
% v3 o( O/ ]8 E- Q3 W H5 @( z
为了保护滚珠丝杠、导轨和操作工吸入空气里的灰尘,伸缩盖、罩、密封和吸尘器也是需要的。从湿式加工转变到干切削的机床设计是可行的,买一台干加工的机床总体来讲费用较低、问题更少。它的吸尘器和压缩空气输送系统也比相对应湿式加工需要的油雾收集器和冷却泵便宜。运行成本也由于干加工消除冷却液管理和处理费用而垂直下降。更进一步,干加工使你从现在和将来的切削液使用责任规章制度解放出来。 |
评分
-
查看全部评分
|