QQ登录

只需一步,快速开始

登录 | 注册 | 找回密码

三维网

 找回密码
 注册

QQ登录

只需一步,快速开始

展开

通知     

查看: 2758|回复: 6
收起左侧

[已解决] 设备能力指数

 关闭 [复制链接]
发表于 2008-6-3 14:40:52 | 显示全部楼层 |阅读模式 来自: 中国山东青岛

马上注册,结识高手,享用更多资源,轻松玩转三维网社区。

您需要 登录 才可以下载或查看,没有帐号?注册

x
cmk设备能力指数,如何来计算?
发表于 2008-6-3 16:24:00 | 显示全部楼层 来自: 中国福建福州
当今产品的普遍趋势是小型化,同时又要增加性能和降低成本,这不可避免地导致在SMT所有领域中的更大的工艺开发。例如,高性能贴装系统的用户希望供应商有新的发展,从而可以大大增加贴装产量,同时又提高贴装精度。就贴装的最重要方面:贴装精度而言,用户都希望所规定的设备参数值可以维持几年不变。这些规定的值通常作为机器能力测试(MCT, machine capability test)的一部分,在供应商自己的地方为贴装机器的客户进行检验。
6 ?4 }* f: r5 IMCT工艺
! }& o& B! }: o贴装系统的标准偏差和标称值的平均值偏差,是贴装精度的两个核心变量,作为MCT的一部分进行测量。MCT是以下列步骤进行的:首先,将某个最少数量的玻璃元件贴装在一块玻璃板上的粘性薄膜上。然后使用一部高精度测量机器来测定所有贴装的玻璃元件在X,Y和θ上的贴装偏差。测量机器然后计算在有关位置轴X,Y和θ上的贴装偏移(标称值的平均值偏差)。
0 e5 B- u% |8 c; j  j在图一中以图形代表的MCT结果得到如下的核心贴装精度值: % {( A  {, ?! l- s
标准偏差 = 8 µm . d1 f- C' B; l0 I: B
贴装偏移 = 6 µm
9 |; s: Q1 V! e! {2 y0 ]通常,我们可以预计贴装偏差符合正态高斯分布,允许变换到更宽的统计基数,如3或4σ。对于经常使用的统计基数,上述指定的贴装系统具有32µm的精度。 % A0 X% H1 x8 z
将导出的精度与所要求的公差极限相比较,则可评估机器对于一个特殊要求的可适用性。机器能力指数(cmk, machine capability index)已经被证明是最适合这一点的。它通常用来评估机器的工艺能力(process capability)。
# P0 k" V. N' H; A" C' p4 r一旦上限(USL, upper specification limit)与下限(LSL, lower specification limit)已经定义,cmk可用来计算贴装精度。
' h# m7 J' I) M  T: m; E0 {由于极限值一般是对称的,我们可以用简化的规格极限SL=USL=-LSL进行计算,如图一所示。
* `7 I/ R5 S1 ^- I$ bcmk= 规格极限-贴装偏移 3x标准偏差 = 3SL-µ 3σ
) m( Z' c# z. R以下的cmk结果是针对图一所提出的条件和客户所定义的50µm规格极限。 ! S9 {" C; ^$ J% [) K) ?
cmk= SL-µ 3σ = (50-6)µm 24µm =1.83 ( R0 \. |. Q: _, r5 i5 R% D& H
因此,cmk评估贴装位置相对于三倍的标准偏差值的分散与平均偏差(贴装偏移)。 1 f( W* p- V2 G. ?1 @( Q
在实际中,我们怎样处理统计变量σ、cmk和百万缺陷率(DPM, defects per million)?在今天的电子制造中,希望cmk要大于1.33,甚至还大得多。1.33的cmk也显示已经达到4σ工艺能力。6σ的工艺能力,是今天经常看到的一个要求,意味着cmk必须至少为2.66。在电子生产中,DPM的使用是有实际理由的,因为每一个缺陷都产生成本。统计基数3、4、5、6σ和相应的百万缺陷率(DPM)之间的关系如下:
- Q' Y4 A8 M) q3 e3σ = 2,700 DPM4σ = 60 DPM5σ = 0.6 DPM6σ = 0.002DPM
& ^4 D( M, l4 F3 D这里是其使用的一个实际例子:在一个要求最大封装密度的应用中(如,移动电话),对于0201元件的贴装精度要求可能是75µm。 9 \: F. g% S  @) \4 T
第一种情况:我们依靠供应商所规定的75µm/4σ的贴装精度。在这种情况中,我们希望在一百万个贴装中,不多于60个将超出±75µm的窗口。
1 U+ j9 ]; z$ f, [6 y- {/ e" B6 s第二种情况:MCT基于某一规格极限产生1.45的cmk。因为1.33的cmk准确地定义一个4σ工艺,我们可以预计得到由于贴装偏差产生的缺陷率低于60 DPM。
5 x( v8 ]! x+ U贴装偏移的优化
/ i8 j$ g6 D& K在SMT生产工艺中,如果怀疑在印刷电路板上的整个贴装特性由于外部机械的影响而已经在一个特定方向移动太多,那么贴装设备必须重新校正。因此这个贴装偏移必须尽可能地减少。有大量贴装系统的表面贴装元件(SMD)电子制造商以类似于MCT的方法进行贴装偏移的优化,并使用其它的测量机器。在相关位置轴X、Y和θ上得到的贴装偏移结果手工地输入到贴装系统,用于补偿的目的。
3 k7 }0 u& T( ?- C% y2 R下面描述的是结合在贴装机器内的一种贴装偏移优化方法。
8 k. q4 {7 I" ]" a" A; l8 J这里想法是要在贴装系统上允许运行一个类似的测量程序,该程序通常是MCT的一部分。目的是,机器找出在X、Y和θ上的贴装偏移,然后以一种不再发生偏移的方式使用。 4 I9 @7 j4 ^4 z3 F9 u- c! |4 c
整个过程是按如下进行的:尽可能最大数量(如48)的玻璃元件使用双面胶带贴装在玻璃板上。每一个玻璃元件在其外边缘上都有参考标记。在板上也有参考标记,紧邻元件的参考标记。
0 j; @+ Z' D  q6 B* ]7 ?# k  M在贴装之后,用PCB相机马上拍出板上和元件上相应的参考标记的四张连续的照片。然后把通过评估程序计算出的和用户接受的X、Y和θ贴装偏移传送到有关的机器数据存储区域。再没有必要使用传统的手工位移输入。由于该集成的方法使用了相对测量而不是绝对测量,位置精度与贴装系统的动态反应不会反过来影响结果的质量。只有PCB相机的图象分辨率和质量才是重要的。因此这个所描述的专利方法具有测量机器的特性。
5 @! G. M; _" J/ g下面的例子显示1.33的cmk可以怎样使用集成的贴装偏移优化来提高至1.92。 ' |7 j, E/ G2 d3 W, D0 {
假设如下初始条件: . B( w3 T, S+ m6 t7 Q3 T' u
SL = 50 µm 7 c8 P: R# _1 M' [' c$ Z, F( z
标准偏差 = 8 µm
$ e4 Y% l- t  u; `+ f/ o: ?8 h  R贴装偏移 = 18 µm   V1 [1 T; a  l# k2 z0 w+ P4 _
原始 cmk: ! x3 i7 N. J* F4 t' V8 e: ^( x
cmk= SL-µm 3σ = (50-18)µm 24µm =1.33
2 o, D; Z/ @8 d  k4 F# g# P" u) L将贴装偏移减少到,比如说,4µm,那么cmk的值将有很大改善。
$ T9 g' {* Q4 w# U8 Q9 z' W贴装偏移优化之后的cmk:
% R! K- X9 {4 ^0 z: bcmk= SL-µm 3σ = (50-4)µm 24µm =1.92
# w0 p3 ?: J8 [, x# A安装在生产线中的贴片机可以升级到尽可能最高的贴装精度,而不需要复杂的、昂贵的和通常难买到的测量机器。或多或少通过简单按下优化过程的按钮,该贴装系统就转换成一部高精度测量机器。

评分

参与人数 1三维币 +3 收起 理由
YHHL + 3 应助

查看全部评分

发表于 2008-6-4 10:07:13 | 显示全部楼层 来自: 中国陕西西安
机器能力指数(cmk, machine capability index)是最适合评估机器对于一个特殊要求的可适用性。
1 [* b& V) [: D+ H" q4 V6 sCMK和CPK大体上差不多公式是一致的,它是对生产设备能够满足要求及稳定性的能力评价,目前接触到的一些企业一般是要求CMK大于1.67,也有是要求大于1.33的,不过前者较为普遍!!

评分

参与人数 1三维币 +3 收起 理由
YHHL + 3 应助

查看全部评分

发表于 2008-6-4 21:41:44 | 显示全部楼层 来自: 中国江苏南京
算法和Ppk算法一模一样,都不分子组。区别只在于取样方式和生产条件,计算设备能力指数要求连续做至少30个产品,以便保证人员、环境等其他因素干扰设备能力指数的计算
 楼主| 发表于 2008-6-7 09:57:21 | 显示全部楼层 来自: 中国山东青岛
各位楼主,太谢谢!CMK大于1.67,或大于1.33的,它与3西格玛有一定联系吗?
发表于 2008-6-28 13:33:03 | 显示全部楼层 来自: 中国上海
知识概念不同而已,就是用算cpk的方法来确定设备的稳定程度,所以在采样的过程中需要选择只和机器有关的样本,没有受其他因素影响的样本,这样才算CMK
发表于 2008-7-6 15:30:46 | 显示全部楼层 来自: 中国上海
CMK其实与CPK的计算公式大致相同的。也有些差异
发表回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Licensed Copyright © 2016-2020 http://www.3dportal.cn/ All Rights Reserved 京 ICP备13008828号

小黑屋|手机版|Archiver|三维网 ( 京ICP备2023026364号-1 )

快速回复 返回顶部 返回列表