QQ登录

只需一步,快速开始

登录 | 注册 | 找回密码

三维网

 找回密码
 注册

QQ登录

只需一步,快速开始

展开

通知     

查看: 2143|回复: 2
收起左侧

[讨论结束] 如何解决微型电动机低频启动问题?

 关闭 [复制链接]
发表于 2007-9-27 17:56:16 | 显示全部楼层 |阅读模式 来自: 中国北京

马上注册,结识高手,享用更多资源,轻松玩转三维网社区。

您需要 登录 才可以下载或查看,没有帐号?注册

x
我用一个380V180W的行星摩擦无级变速器,2 o+ o/ v, m* r* Y$ x
电动机采用变频器(富士FRN系列)进行调速
% k! E0 n$ I  d7 w可是在15Hz(有时20Hz都不行)以下时启动不了;负载应该不大
9 w- p3 v- W  j- {7 x, B( [0 U空载时,10Hz勉强能启动,感觉很吃力$ N5 V8 M. v% `! }, Y. [
如何解决低频启动问题?: u1 c& {2 l! X
请大家支支招!
发表于 2007-9-27 18:39:04 | 显示全部楼层 来自: 中国广西桂林
为年内晋升"懂事长"而努力奋斗!!!
" k8 X0 b4 ~" J+ M. i7 ~- D: V. u6 u4 O
推荐两篇论文. 修改V/F参数可能可以改善低频启动性能.- B3 a2 b' T* q' x& r
$ X% H  D! }8 D) c1 o
* B/ M" ?" z; S1 X2 F: h
变频器低频特性分析及改善措施0 C& J6 E1 i) F# l! S; m5 a! m

4 `9 N: G8 {- |  u% I; n$ Z* P1 概述
: Q; P" }& t& ?, ~8 y    由变频器构成的交流调速系统普遍存在的问题是,系统运行在低频区域时,其性能不够理想,主要表现在低频启动时启动转矩小,造成系统启动困难甚至无法启动。由于变频器的非线性产生的高次谐波,引起电动机的转距脉动及电动机发热,并且电动机运行噪声也加大。低频稳态运行时,受电网电压波动或系统负载的变化及变频器输出电压波形的奇变,将造成电动机的抖动。当变频器距电动机距离较大时及高次谐波对控制电路的干扰,极易引起电动机的爬行。由于上述各种现象,严重降低由变频器构成的调速系统的调速特性和动态品质指标,本文对系统的低频机械特性和变频器的低频特性进行分析,提出采取相应的措施,以使系统的低频运行特性能得以改善。
/ S4 V" ^, {: m$ Z8 D& r1 O$ Z    2 变频器低频机械特性 7 k. b( x$ m# x3 V; w: w
    2.1 低频启动特性
# F+ H9 A( L* n' o: S1 p& w- Z$ c    异步电动机改变定子频率F1,即可平滑地调节电动机的同步转速,但是随着F1的变化,电动机的机械特性也将发生改变,尤其是在低频区域,根据异步电动机的最大转距公式: 0 ^5 C0 U  [, N% G, Q; |' z+ u" k6 N
    Temax=3/2{np(U1/W1)2}/{R1/W1+/(R2/W1)2+(LL1+LL2)2} 式中np—电动机极对数;
# H5 C. |% J: F    R1—定子每相电阻; 1 n$ \+ u- r; b& c3 {5 D
    R2—折合到定子侧的转子每相电阻; 2 t7 ]" }; e0 Z' u0 v% S6 Q0 z! Q
    LL1—定子每相漏感; - w# h0 G. C8 ]; i9 d* ^
    LL2—折合到定子侧的转子每漏感;
% d& }& U: x: e+ S    U1—电动机定子每相电压;
. Q0 i6 L2 }6 r9 {( h. s# O' {    W1—电源角频率
1 q& I0 K# t0 E4 I: ~    可见Temax是随着W1的降低而减小,在低频时,R1已不可忽略。Temax将随着W1的减小而减小,启动转距也将减小,甚至不能带动负载。
# B$ i! J2 R3 e) i- `& ^    2.2 低频稳态特性
0 X1 `0 K, W9 x8 D9 P- i    电动机稳态运行时的转距公式如下: 9 C+ F! i0 g* {8 Y) \8 @
    TL=3np(U1/W1)2SW1R2/{(SR1+R2)2+S2W2(LL1+LL2)2 } ) w+ k9 {* D7 A' F" T0 e
    在角频率W1为额定时,R1可以忽略。而在低频时,R1已不能忽略,故在低频区时由于R1上的压降所占的比重增加,将无法维持M的恒定,特别是在电网电压变化和负载变化时,系统将出现抖动和爬行。
# S, C2 D2 s, K* R1 F' x  D, `    3 变频器调速系统低频特性
6 t: t- f! U: O4 l    3.1 谐波分析 9 Z  j3 k. s/ J; Q& s
    由变频器构成的调速系统,由于变频器的非线性,电动机定子中除了基波电流外,还有各次谐波电流,由于高次谐波的存在,使电动机损耗和感抗增大,减少了cosφ,从而影响输出转距,并将产生6倍于基波频率的脉动转距。
4 _% j  b( j0 G( R    以电流波形中的5次、7次谐波来分析,在三相电动机定子电流中的5次谐波频率为 F5=5F1 (F1为基波电流频率),它在电动机气隙中产生空间负序的磁势和磁场,这个磁场的转速 n51为基波电流所产生磁场的转速n11的5倍,并且沿着与基波磁场反的方向旋转,由于电动机转速一定,并假设接近n11,这样由5次谐波磁势在转子内感应出6倍于基波频率的转子电流,此电流与气隙基波磁势的合成作用产生6倍于基波频率的脉动转距。
/ ~1 V# ]3 d% ]: n& J2 O1 d7 d" G    7次谐波所产生的磁场与基波同相序,但它所产生的旋转磁场转速7倍于基波旋转磁场的转速,故相应转子电流谐波与气隙主磁场的相对转速也是6倍于基波频率,也产生一个6倍于基波频率的脉动转距。   s2 L' I% u# q( t! q6 ^& r- H
    以上两个6倍于基波频率的脉动转距一齐使电动机的电磁转距发生脉动,虽然其平均值为零,但脉动转距使电动机转速不均匀,在低频运行时影响最大。 * g" H2 k5 ?4 ~8 U- f0 k
    3.2 准方波方式下脉动转距的产生
' i3 \& `& s, ~    分别设ψ1、ψ2为定子磁链及转子磁链的空间矢量,在稳态准方波(QSW)运行方式时(桥中晶闸管用1800电角脉冲触发)ψ1在输出周期内沿着正六边形的周边运动。ψ2沿着与六边形同心的圆周运动,在准方波运行方式下ψ1和ψ2运动是连续的,但它们且有重大的区别,当矢量ψ2以恒定定子电压角速度W1旋转时,矢量ψ1以恒定的线速度沿正六边形周边运行,矢量ψ1线速度恒定导致其角速度的变化,进而引起ψ1和ψ2的夹角δ变化,除此,当ψ1沿着六角形轨迹移动时其幅值在一定程度上也有变化。当电动机空载时,由于处于稳态ψ1与ψ2的夹角与转距T在W1t=0、π/6、π/3时为零,而当W1T≠0、π/6、π/3时,δ不为零,它与上面提到的ψ1幅值变化一起引起低频转距脉动,其频率为定子电压基波的6倍,当电动机带负载时对应于一个恒定的δ均值,低频转距脉动将叠加于恒定转距均值之上。
  O$ y2 X" p+ ~. ]% N0 ]7 n    4 系统低频特性改善措施
- |# M. ~8 f+ H' u    4.1 启动转距的提升
/ z, S$ I% a4 a7 {, ~. |; t    由于系统在低频时R1上的压降影响,使系统的启动转距随W1下降而减小,为此变频器设有转距提升功能,该功能可以调整低频区域电动机的力矩,使之与负荷配合,增大启动转距。可选择自动转距提升和手动转距提升模式,其原理是提升定子电压也就相应提高了启动转距,但提升电压设置过高,将导致电流过大引起电动机饱和、过热或过电流跳闸。如1336PLUS系列变频器的转距提升功能,可自动调整提升电压,以产生所需的电压,可根据预定转距所需的电流来选择提升电压,转距提升在控制电流的同时使电动机处于最佳运行状态,在选择手动转距提升时,要结合实际情况来设定转距提升值。 $ T6 u: g2 q& d. F! h
    4.2 改善低频转距脉动
5 g% b  d* ~, [' M' r. \' {# V4 _    变频器构成的交流调速系统的低频转距脉动直接影响系统动态特性,不论是变频器的生产厂和系统集成的工程技术人员,都在尽力于改善低频区脉动这一技术问题.如采用磁通控制方式、正弦波PWM控制方式,它不是按照调制正弦波和载波的交点来控制GTR的导通和关断,而是始终使异步电动机的磁通接近正弦波,旋转磁场的轨迹是圆形来决定GTR的导通规律。在很低的频率下,保证异步电动机在低速时旋转均匀,从而扩大了变频调速范围,抑制异步电动机的振动和噪声。其圆形旋转磁场的实现,是通过检测磁通使控制环节随时判断实际磁通超过误差范围与否,来改变GTR的工作模式,从而保证旋转磁场的轨迹呈圆形,以减少转距脉动。 & u1 W( r6 f( A4 O' W1 K
    4.3 圆周PWM方法降低转距脉动 : o" V# f- O% M" q
    “圆周”的含义是指定子磁链ψ1空间矢量在高斯平面中沿着一个非常接近于圆周的多边形,其以降低电动机脉动转距为目的来确定电压脉冲的宽度和位置。三相逆变器为全波桥式结构,如其运行在这样一种方式下,当交流输出端(a、b、c)之一在任何时候接通直流母线(应同时接到另一个直流母线上),这一原理从图1(a)中可以明显表示清楚。显然交流输出端接到直流母线方式有六种,这就导致定子电压U1的空间矢量有六个位置,这六个位置如图1(b)所示,图1(b)中六种开/关状态对应着U1的六种位置,图中粗线位置表示开关1、3、6处于开的位置,投影所产生的瞬时相电压如下: ' n$ z6 E! d& L0 {9 @5 a
    Va=Vb=1/3Vdc Vc=-2/3Vdc
, {# B0 Z* y( n7 y) o1 E# n    其余类推,符号Va、Vb、Vc代表三相输出电压的瞬时相电压值,假如Ia+Ib+Ic=0由空间矢量在A、B、C轴上的垂直投影就可得到Va、Vb、Vc,除以上六种开/关状态外,还有使开关1、3、5或2、4、6同时关断两种状态,在这种情况下,交流输出端a、b、c接到同一电位上,U1及Ua、Ub、Uc顺次变为零,将这种运行方式应用到一个三电平PWM逆变器上可获得与两电平PWM相比而言较低的谐波成分。
; P3 w7 V( T* q9 `    PWM形式是一种斩波准方波调制,负载上的相电压由矩形段和零电压段(U1=0时)组成,在每个电压脉冲时刻,矢量ψ1以恒定线速度移动,而在零电压段保持静止,然而由于矢量ψ2以恒定角速度W1转动,ψ1和ψ2间的夹角δ就出现了,因此电压斩波是引起高频转距脉动的主要原因,频率与输出电压矩脉冲频率相同。这是由于PWM自身固有的,实际上高频转矩脉动是很难消除的,并叠加于低频转矩脉动之上。为消除系统的低频转矩脉动可从以下两种方式开展工作。
. Z1 B" e9 W& H/ c8 g    (1) 在电压脉冲中间点的时刻,矢量ψ1、ψ2间的夹角δ在稳态运行时对于所有脉冲应保持恒定,消除由δ变化而产生的对低频转矩(频率为6F1)的影响,在空载情况下δ=0尽管ψ1的幅值变化,低频转矩脉动仍然将被完全消除。
5 ]% H0 J! [" |& A6 g    (2) 在恒定的负载时(δ-cost≠0)仅仅ψ1幅值的变化引起低频转矩脉动,而负载引起ψ2幅值的变化可以忽略,因此必须获得一个比较接近于圆周的ψ1矢量轨迹。
3 f7 N  d* r' Y# p. l3 @, \    圆周PWM是利用空载矢量ψ1的空间位置来确定电压脉冲的中间点,即晶闸管导通段及零电压段的合理组合,可以产生幅值变化可以忽略不计的ψ1,此原理如图1所示,ψ1停止时刻(即零电压段)用圆点标出,确定电压脉冲位置使它们对称,如图中各横坐标的中间点,脉冲宽度(即持续时间)与横坐标长度相对应,所要求的输出电压来确定.自然电压波形周期由ψ1矢量沿多边形转一周所需的时间确定。采用此方法在保持输出电压由零到最大值可变的同时,可有效的消除低频转矩脉动。
' J) N" w# i. h2 N& W
% {4 w7 e! v$ G* m
5 d9 t- a+ c  ~关于启动性能参数的设置,看看下面的文章,主要是V/F参数.
/ z- d- D' p* j- P! n8 B5 M# ^# k, J1 s4 p) ^* I% `* d& m, I
[ 本帖最后由 chinaebwcom 于 2007-9-27 18:58 编辑 ]
片段.jpg
片段_2.jpg
片段_3.jpg
片段_4.jpg
片段_5.jpg
片段_6.jpg
片段_7.jpg
片段_8.jpg
片段_9.jpg
片段_10.jpg
片段_11.jpg
片段_12.jpg
片段_13.jpg

评分

参与人数 1三维币 +6 收起 理由
bdblbyq + 6 应助

查看全部评分

 楼主| 发表于 2007-9-27 19:30:56 | 显示全部楼层 来自: 中国北京
谢谢帮助  _# H  ?, t1 D1 Y6 C3 U
还有一问:根据我使用的情况,
% r9 [  O; L: e6 z5 u) s8 T大功率电机的低频启动特性比小功率电机的低频启动特性好
  \0 o: E) t. x' i其原因是什么?
发表回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Licensed Copyright © 2016-2020 http://www.3dportal.cn/ All Rights Reserved 京 ICP备13008828号

小黑屋|手机版|Archiver|三维网 ( 京ICP备2023026364号-1 )

快速回复 返回顶部 返回列表