|

楼主 |
发表于 2007-1-13 21:45:44
|
显示全部楼层
来自: 中国上海
早在第二次世界大战期间,氢即用作A—2火箭发动机的液体推进剂。196O年液氢首次用作航天动力燃料。1970年美国发射的“阿波罗”登月飞船使用的起飞火箭也是用液氢作燃料。现在氢已是火箭领域的常用燃料了。对现代航天飞机而言,减轻燃 料自重,增加有效载荷变得更为重要。氢的能量密度很高,是普通汽油的3倍,这意味着燃料的自重可减轻2/3,这对航天飞机无疑是极为有利的。今天的航天飞机以氢作为发动机的推进剂,以纯氧作为氧化剂,液氢就装在外部推进剂桶内,每次发射需用1450 m3,重约100t。 . d9 v/ @4 j* Z1 G
现在科学家们正在研究一种“固态氢”的宇宙飞船。固态氢既作为飞船的结构材料,又作为飞船的动力燃料。在飞行期间,飞船上所有的非重要零件都可以转作能源而“消耗掉”。这样飞船在宇宙中就能飞行更长的时间。
6 B8 U9 S; D/ A! g; s; i! m! h9 m 在超声速飞机和远程洲际客机上以氢作动力燃料的研究已进行多年,目前已进人样机和试飞阶段。 在交通运输方面,美、德、法、日等汽车大国早已推出以氢 作燃料的示范汽车,并进行了几十万公里的道路运行试验。其中美、德、法等国是采用氢化金属贮氢,而日本则采用液氢。试验证明,以氢作燃料的汽车在经济性、适应性和安全性三方面均有 良好的前景,但目前仍存在贮氢密度小和成本高两大障碍。前者使汽车连续行驶的路程受限制,后者主要是由于液氢供应系统费用过高造成的。美国和加拿大已联手合作拟在铁路机车上采用液氢作燃料。在进一步取得研究成果后,从加拿大西部到东部的大陆铁路上将奔驰着燃用液氢和液氧的机车。
" b4 c) f' v, Z' F氢不但是一种优质燃料,还是石油、化工、化肥和冶金工业中的重要原料和物料。石油和其他化石燃料的精炼需要氢,如烃的增氢、煤的气化、重油的精炼等;化工中制氨、制甲醇也需要氢。氢还用来还原铁矿石。用氢制成燃料电池可直接发电。采用燃料电池和氢气-蒸汽联合循环发电,其能量转换效率将远高于现有的火电厂。随着制氢技术的进步和贮氢手段的完善,氢能将在21世纪的能源舞 空气源热泵技术是基于逆卡诺循环原理建立起来的一种节能、环保制热技术。空气源热泵系统通过自然能(空气蓄热)获取低温热源,经系统高效集热整合后成为高温热源,用来取(供)暖或供应热水,整个系统集热效率甚高。
- V/ Q" d2 ?+ F, y 热泵有四大优点,第一是节能,有利于能源的综合利用,第二点是有利于环境保护,第三点是冷热结合,设备应用率高,节省出投资,第四因为它是电驱动,所以它调控比较方便,因此热泵备受大家的关心。 ) P9 b4 T5 l5 P; e- Z* @ w
o8 W+ [9 U' _/ s
热泵技术就二十一世纪的一个能源技术,能通过热泵的形式,可以提高能效的利用,能效的利用有两个含义,从环境角度来讲,可以减少温室气体的排放,减少对环境的有害的因素,从另外一个方面来说,就是解决电力高空负荷的一项技术。台上大展风采。
, i% G. d+ |* D5 ^* n! }% p(5)氢能利用技术 + y8 D, K* R; b1 e( \9 q
从70年代初开始将氢应用于发电以及各种机动车和飞行器的燃料,已有不少试验装置在运行。氢作为能源使用时,无污染物产生,燃烧产物是水,而生产氢的原料也是水。氢的热值高,每克液氢可达120千焦,是汽油的2.8倍。 9 Y3 N& R4 Q: `
1)氢气制备。可以用电解法、热化学法、光电化学法或等离子体化学法制氢。
* ~. F3 j, p3 a/ B, w, j+ {2)氢的储存。氢的储存可以用压缩、低温液化和贮氢金属吸存。 9 j6 @/ _; Y# Q, h# `% X0 D) c0 v
3)氢的利用。可作燃料,用于导航、机动车等;可用氢燃料电池通过电化学反应直接转换成电能;可用作各种能源的转换介质或中间载体。 : J% o" h$ T* o
作为人类长远的战略能源,氢可与其他一次能源结合发展各种氢能系统,特别是太阳能-氢能综合能源系统有很好发展前途。国际上认为氢能将是21世纪中后期最理想的能源。 ; D1 Z, f9 u( U( P
[六]核能: / ?: O# h+ M) b( g5 R
核能用于民用,主要是发电,我国发展核电工业已经有30多年历史,建立了从地质勘察、采矿到元件加工、后处理的比较完整的燃料循环体系,探明了一批有一定储量的铀矿资源,已经建成多种类型的核反应堆并且积累了多年安全管理和安全运行的经验。据了解,我国已投入运行的核电厂多年来一直保持着良好的安全记录,核电正在我国国民经济中发挥着举足轻重的作用。1999年大亚湾核电站完成上网电量近135亿度,全年创汇5.6亿美元,上交各项税金2亿元人民币。秦山核电站和大亚湾核电站输送的电力有效地缓解了华东、广东等地电力紧张的局面,并为香港输送了大量电力,显示了核电的巨大作用。到21世纪初,中国核电装机容量将达到850万千瓦,占全国发电能力的30%左右。
/ b" G: F! d8 a建设发展核电不仅是我国,也是世界各国解决长远电力供应的一条必经之路。据核工业总公司有关人士介绍,核电在工业发达国家已经有几十年的发展历史,现在核电在世界上已经成为一种成熟的能源。目前,世界上共有500多座发电用的核反应堆在运行,有近30个国家和地区的核电厂在发电,核发电占世界总发电量的17%。其中有12个国家和地区核发电量超过自身总发电量的1/4,有的国家已经超过70%。预计,今后30年核发电量将占世界总发电量的30%以上。在世界范围内煤、石油等能源日益紧缺,环境污染日趋严重的现状下,不少国家正准备考虑发展核电。核电带给我们的不仅仅是电。
u4 G. W2 F3 ~: o# A Z1 t 再有,聚变能电站以氢的两种同位素氘和氚作为燃料。氘是天然同位素,在海水中含量极为丰富,其潜在储能可供人类使用几亿年,可谓取之不尽、用之不竭。除了燃料丰富这个优点外,聚变能还有几个特点。燃料价格低廉。聚变核电站是一次性投资,燃料费用约占1%左右。与裂变核电站相比,聚变核电站的燃料几乎是不花什么钱的;不污染环境,运行安全可靠。聚变与裂变相比,其放射性是微乎其微的,它还消化裂变的污染源,几乎没有废料;可直接转化成电能等。专家认为它是人类最理想的能源。 + t9 k; v) r5 s- b! F
( 6 )核能新技术 - s3 i. F7 `1 x( D, w
1)新一代压水堆核电站
; y( i, u; S$ |+ l* j2 E 具有固有安全性的核电站反应堆。核反应堆在任何事故条件下都能自动停止运行,而且在最严重的假想事故条件下,停堆后的堆芯乘余热能依靠自然循环机理,导出堆外,保持堆内芯部和燃料元件的完整,从根本上排除堆芯深地、放射性逸出的可能,这种特性称为固有安全性,如改进压水堆、模块式高温气冷堆等。
6 A1 D$ F' B* M- v4 A4 n q(2)核燃料的增殖-快中子增殖反应堆。热中子反应堆主要是利用开然铀内的少量铀-235,以及在反应堆生成少量钚-239。因此热中子堆仅利用天然铀中2%左右的铀,世界上探明的铀资源难以保证核能的长期大规模利用。由快中子来产生和维持链式裂变反应的反应堆--快中子堆,才有可能实现核燃料的增殖。快中子堆以钚-239为裂变燃料,由铀-238为增殖原料,铀-238俘获快中子后又可生成钚-239。由于一个钚-239原子核裂变放出的中子数平均值比一个铀-235核裂变放出的中子数为多,而且新生的钚-239有可能比消耗的钚-239还多,这样就可以实现核燃料的增殖。1951年,美国建成世界上第一座按上述原理工作的新型核反应堆-快中子增殖堆。到70年代末,快中子堆示范电站输出电功率已达3万千瓦,开始进入实用阶段。我国“863”计划已计划建造快中子实验堆。快中子堆在理论上可以利用全部铀资源,但实际上由于各种损失,约可利用铀资源达到60%以上。
0 c4 v6 B1 E5 b- i3 o A9 q% D(3)新的 供热资源-低温核供热堆和高温气冷堆
4 _" a X# i6 B, Q" z- M' U 低温核供热堆是压水堆型的热中子堆,但它的参数远低于核电站用的压水堆,其压力约为15巴,温度200℃左右。由于参数低,设备造价低,在经济上有竞争力,世界上如原苏联、加拿大、德国、瑞典、瑞士、法国等国都有发展低温核供热的计划。我国开展低温核供热堆已有多年,第一个5000千瓦的低温核供热试验堆已于1990年投入运行。 ! ~8 E. X( K3 r& E
高温气冷堆是采用石墨作慢化剂和惰性气体氦气作冷却剂的热中子堆。由于石墨耐高温,所以反应堆出口的氦气温度可以高达950℃。元远高于核电站压水堆的出口水温300-350℃,现在设计的模块型高温气冷堆不仅可以高温供热,高效发电,而且有很好的固有安全性能。德国和美国在60年代就有实验堆和示范堆运行,目前日本正在建造3万千瓦热功率的高温气冷实验堆,我国“863”计划也决定在本世纪内建造1万千瓦热功率的实验堆。 ) s( k9 L' V1 x1 f' Z
(4)受控热核聚变能 ' F. T' R F" n# H
1)聚变反应。核聚变是两个或两个以上的较轻原子核〖如氢(H)的两种同位素: (D)帮 (T)〗,在超高温等特定条件下聚合成一个较重的子核,同时释放出巨大能量。因为这种反应必须在极高的温度(1-5亿℃)下进行,所以叫热核反应。据计算,1公斤热核聚变燃料放出的能量为核裂变的4倍。 |
|