|
马上注册,结识高手,享用更多资源,轻松玩转三维网社区。
您需要 登录 才可以下载或查看,没有帐号?注册
x
生物基塑料塑料作为高分子材料、生命科学和机械工程等多学科交叉的前沿领域,在世界各国广受重视。针对生物基塑料的材料及加工技术研究正在迅速发展,并呈现出与纳米技术、自组装技术、材料生物降解、新型医用材料等研究领域相互结合的趋势。
( C; X# [1 a- h0 q) d& n8 h! [# |2 t; ?4 g$ f6 U4 F4 n, x
随着人们对环境问题的日益关注,生物基塑料作为高分子材料、生命科学和机械工程等多学科交叉的前沿领域,正成为世界各国普遍重视的研究热点。美国能源部(DOE)预计到2020年,来自植物可再生资源的聚合物材料应用将增加到10%,而2050年更有可能达到50%。
+ j+ K& e0 X, }( v" i" N: j1 e7 G
生物基塑料种类与原料 ; {$ G9 s4 c0 E2 h& b6 E
; B1 f& }! k0 b( V; k4 V$ L
生物基塑料与合成塑料材料相比,具有良好的生物相容性、生物可降解性且降解产物无毒副作用等优点。生物基塑料可以分为微生物类、天然物类和化学合成类三种类型。微生物类生物基塑料主要利用细菌、霉菌、藻类等微生物在代谢过程中体内积聚的聚酯类物质,生产的如聚羟基丁酸戊酸共聚酯(PHBV)、微生物多糖等;天然物类生物基塑料主要包括壳聚糖/纤维素、淀粉、醋酸纤维素、热塑性淀粉等;化学合成类生物基塑料由於利用化学生物法合成,因此组成和分子量都可以自由设计,产品种类众多,如硬质类如聚乳酸(PLA),软质类如聚己内酯(PCL)、聚丁二酸丁二醇酯(PBS)、聚(丁二醇丁二酸/己二酸酯)(PBSA)、聚(对苯二甲酸丁二醇酯-己二酸丁二醇脂)(PBAT)、聚乙烯醇(PVA)。 目前以美国、日本为代表,正在进行生物基塑料生产原料的扩展研究。主要包括:(1)废弃物:如食品废弃物、餐厨垃圾、家畜排泄物、建筑废弃物、旧纸张等;(2)未利用废弃物:如农作物非食用部分、林地残留物等;(3)资源作物:如以能源、制品原料为目的的油脂植物、糖类作物等;(4)新类型作物:海洋植物、转基因植物等。从而减少目前生物基塑料对於粮食作物、经济作物的使用量,更好的发挥生物基塑料的环境友好性。 $ L$ ] B, |) z/ J
z* s4 q, r0 O" R通过图1与图2的对比可以看出,生物基塑料的环境友好度明显大於常用的石油基塑料。加之具有良好的回收处理性能,在进一步拓宽原料来源,提高使用性能後,无疑将成为传统石油基塑料的重要替代材料。 生物基塑料在日本的应用与研究进展 5 W$ l- P: m7 F6 \ r2 N
: ^& s' O5 M' `, i0 X从用途来说,生物基塑料主要应用於以下几个方面。(1)农业工程、土木工程材料;(2)生活垃圾回收袋;(3)食品的容器、包装;(4)非食品的容器、包装;(5)衣料纤维、生活用品;(6)电子设备;(7)办公设备;(8)汽车零部件;(9)医疗用品等。
+ ^7 f3 K; X$ t) ?* m( I
) S- i9 s( ?5 c* @随着各国针对生物基塑料的研究不断深入,针对不同材料配方改进与加工制备方法的研究也随之更深入,体现出良好的发展趋势。
9 s$ N& q0 q3 ?3 O( |. d; H4 k
- g4 N1 p7 ?, m) [5 n2 u% l- U替代PC/ABS的电子设备、办公设备部件制造 1 Y4 g8 A8 N4 ~. ~. n% j# k
) j" R* _8 M9 S
日本富士公司研发的PC/PLA混合材料的阻燃性已能达到UL-94规格的最高等级标准,并成功解决了PC/PLA/阻燃剂混合後导致的成型难度加大、制品抗冲击性下降的问题,使得PC/PLA材料的加工条件与抗冲击性基本达到传统PC/ABS材料的性能。目前使用的PC/PLA材料中PLA含量已达到25%,并有望继续增加。该材料主要用於电子设备、办公设备外壳部件。
J" d3 c4 F) P7 n9 G, Y5 } Q W9 P2 X% G2 x3 j0 S
替代PP的汽车内饰件部件制造
8 v, n8 |0 f9 d( c" r# c6 A) Q6 `& o2 S; E
汽车内饰部件对於材料的耐热性(100℃以上)、耐冲击性(>7kJ/m2)有较高的要求,目前多使用PP类石油基塑料材料。随着提升PLA结晶性能的新兴结晶剂的使用,通过在反应器中进行预反应处理,在不降低耐冲击性的基础上有效的提成耐热性,使得PLA注射制件的整体性能大幅提升,耐冲击性达到13kJ/m2,已经呈现出可以替换部分汽车内饰件PP材料的趋势。目前有多家汽车公司均在开展PLA材料研究,预计在2013年实现一定比例内饰件材料替代。
: C8 ]5 s8 _$ k7 g! L3 y
0 c7 ?% W# u; \# l替代石油基PE的容器、配管、胶片制造 , g. l2 Z, _8 X" j! A1 Y- M, u
" a* `& w( P1 t洗浴液的包装材料通常要求具有较好的耐冲击强度(坠落冲击)、耐药蚀性,和良好的手感,通常使用石油基PE材料经中空成型制造。目前资生堂公司已开始进行使用生物基PE材料制造包装容器的试验。试验显示,生物基PE材料的性能已基本达到石油基PE材料的性能,但生物基PE材料成本是石油基PE的1.3-1.5倍。如何有效降低成本是下一步研究的主要内容。 % v, r Q7 S1 o$ {& U7 Y, M& F
$ W$ g, A, \: `5 Q( S8 c& U: ]
日本Braskem公司计划从2011年开始生物基PE的正式生产,一方面替代HDPE材料制造硬质容器、配管类制品,另一方面替代LLDPE制造胶片类制品,计划年产量20万吨,其中5万吨在亚洲销售。
9 M& }! e& c4 K! ]8 r# r* {/ Z
5 {8 I' c7 } S) w: Y替代PP的洋麻纤维/PP共混材料 4 j/ E( B: X* g( |; N) Z q
# V4 d4 O" ^& j9 t
丰田纺织公司近年开始尝试使用洋麻纤维材料制造汽车内饰部件。
; ]$ A5 p; h$ D( B4 U, j$ d S
. l8 [5 N) j2 e- i, t) F该技术首先将洋麻纤维破碎成为直径5mm左右的颗粒,与PP粉料混合後进行注射成型,产品与单纯使用PP的产品相比,刚性强、收缩率小。在洋麻纤维的含量达到60%的情况下,洋麻纤维/PP混合料流动性与PP基本相近。在注射件长度1米左右时,成型效果良好。在全球金融危机的影响下,高价格的汽车销量有所下降,为洋麻纤维/PP材料的应用提供了契机,可以更好的发挥其价格低、外观好的优点。
8 c, ? a% h+ H3 j
& i& W+ l7 f3 G" q8 K0 k2 a( r- t陈旧/废弃粮食基塑料制造 ' i1 V. G T5 G' a, e( V* D
6 l/ ?# B. a* Y2 `: ?. l: f: O- p) d
废弃粮食包括由於存储时间过长、霉变的粮食,也包括食品工业加工的废弃料。为了对这些陈旧/废弃粮食进行有效利用,使用这些材料制造生物基塑料便成为了较好的处理方法。通过将粮食粉末与PE、PP混合,制备仿木材料、托盘、食器等制品。
& M5 C& m2 Q7 M$ {' \& O1 W/ P! G2 t3 |- w* B. y& U
使用废弃粮食制备制品,根据加工成型工艺不同,温度与含粮食率各不相同。一般来说废弃粮食的含水率较大,当温度达到140℃时,混合材料中的水分开始挥发。但当温度超过180℃时,粮食成分会出现焦烧、变色现象,导致制品质量劣化。因此加工温度必须严格控制在140-160℃间,进行低温加工。
^6 O* G9 T. j3 l/ y& C; F# J8 d8 }' [" L6 D3 O
混合材料使用不同的加工方法,能达到的最大粮食成分含量各不相同。一般来说,异型材挤出成型含量最高可达70%左右,注射成型含量约为50%-70%,板材挤出成型含量约为50%,压膜成型含量约为50%,吹膜成型含量约为35%。 |
|