|
马上注册,结识高手,享用更多资源,轻松玩转三维网社区。
您需要 登录 才可以下载或查看,没有帐号?注册
x
基本信息 " A9 ^% @5 c8 Y- v' M% f
书名:先进陶瓷制备工艺—化学工业出版社/ t' D; d. X( y/ \/ O* m
作者:王昕、田进涛 编著1 q1 Z# R$ }/ T! X1 A# F T
出版日期:2009年1月4 x2 R; s4 {5 O2 o
版次:1版1次1 u0 b. `8 N8 h- ^
装帧:平
) C. w3 V6 s. D W" a开本:16
( `5 z' t. |4 Z% [' F4 G页数:208页
1 x9 f' `/ G u书号(ISBN):978-7-122-03865-43 v8 M+ A' o+ A1 m8 a
定价:38.0元 内容简介 本书以材料制备基础知识与理论为基础,针对先进陶瓷粉体、先进陶瓷固体材料、先进陶瓷复合材料等,系统地介绍了国内外常用及最新前沿制备技术与工艺,包括制备原理、工艺路线、技术特点、实用举例。先进陶瓷粉体制备技术既涉及常用粉体制备技术,又涵盖了纳米陶瓷粉体制备技术。先进陶瓷固体材料制备技术是全书的重点,本书从粉体预处理、固体成型、固体烧结三个方面进行了详细介绍。本书最后对先进陶瓷复合材料、多孔材料以及先进陶瓷的加工等技术进行了介绍。本书可供从事陶瓷和复合材料研究、生产及其应用开发的科技人员参考,也可作为大专院校材料及相关专业的教材或学习参考书。 前言 陶瓷是一种与人类生活和生产密切相关的材料,包括传统陶瓷和先进陶瓷。较之以天然硅酸盐矿物为原料经过粉碎加工、成型、烧结等过程得到的传统陶瓷制品,先进陶瓷是采用纯度很高的人工合成化合物,通过恰当的结构设计、精确的化学计量、合适的成型方法和烧成制度,并经过加工处理得到的高性能陶瓷。由于在原材料、制备工艺、制品微观结构和性能等方面的先进性,先进陶瓷材料在性能的综合性、实用性、可设计性方面具有很大的发展潜力,虽然其整个发展历史只有半个多世纪,但其优异的力学性能和各种光、电、声、磁性能,已在各个行业领域如石油、化工、钢铁、电子、纺织和汽车等行业以及航空、航天等高科技领域都有着广泛的应用前景。对于给定的材料,其性能往往取决于内部结构。只有改变了材料内部结构才能达到改变或控制材料性能的目的。材料的制备技术与工艺常常对材料的结构进而对性能起着决定性的作用。一般来讲,基于经验性的传统陶瓷的制备工艺比较稳定,侧重于效率及制品质量控制,对材料显微结构的要求并不十分严格。先进陶瓷材料的制备技术是在传统陶瓷制备技术的基础上不断探索总结而发展起来的,其在粉体制备、成型与烧结方面采取了许多特殊的措施进行材料显微结构的控制,以期获得性能优异的先进陶瓷制品。特别是,对先进陶瓷而言,由于烧结过程伴随有致密化、晶粒生长、晶界形成、气孔尺寸变化等多个因素,并且这些因素之间相互干扰,使得最后烧成品的性能不仅与烧结过程有关,而且也与烧前生坯及粉体性能有密切关系,从而赋予先进陶瓷材料性能对制备技术与工艺的很强依赖性。鉴于先进陶瓷材料的性能极大地依赖于其制备技术与工艺,笔者结合多年从事先进陶瓷材料研究的实践与成果,在参考国内外相关领域研究成果的基础之上,编著了本书。本书第1章概述了传统陶瓷、先进陶瓷及其制备方法。第2章介绍了陶瓷制备技术基础知识,包括晶体学知识、相图与相变、扩散、胶体化学等基础知识及其在先进陶瓷制备过程中的作用,为后续的内容介绍奠定了理论基础。第3章在介绍粉体特性与表征知识基础之上,详述了先进陶瓷粉体制备技术,特别是纳米陶瓷粉体的制备技术与工艺。第4章的先进陶瓷固体材料制备技术是本书的重点,分别从粉体预处理、固体成型、固体烧结三个方面进行了相关制备技术与工艺的详细介绍。在第5章、第6章分别对先进陶瓷复合材料、多孔材料的制备技术与工艺进行了介绍,第7章介绍了先进陶瓷的加工技术。笔者在充分调研相关资料的基础之上,对本书的编著进行了细致的规划与设计。在全书框架结构的安排上,本书开篇介绍了与材料制备密切相关的基础知识与理论,为后续制备技术的介绍奠定基础;在制备技术内容的取舍方面,本书既介绍了一般常用制备技术及其原理与特点,又详细介绍了国内外相关领域的最新前沿制备技术细节及其特点;在制备技术介绍的细节方面,本书尽可能地遵循了制备原理、工艺路线、技术特点、实用举例的行文思路,并尽可能地配以原理示意图、工艺路线图等;在全书内容的语言表述方面,在保持科学术语的正确性与严谨性的前提之下,力求做到内容阐述深入浅出、语言表述精练简洁。因此,本书具有理论与实践并重、知识体系介绍全面、内容阐述思路清晰、语言表述精练简洁的特点。本书可用于大专院校材料及邻近专业的教师或学生作为教材或学习参考书,也可作为相关领域科研及工程技术人员从事科学研究、工程开发的参考用书。本书在编著过程中参考了大量国内外相关研究领域的研究成果(见参考文献),在此谨向本书所引用参考文献的原作者表示敬意和感谢。同时,在本书编著过程中,多位同行专家提出了宝贵意见,多位研究生参与了资料收集与整理工作,特向他们表示衷心感谢。由于笔者的理论与实践水平有限,书中难免存在不妥之处,敬请各位读者批评指正。
% n* t2 Y- F+ g7 H7 c8 N
$ u4 u! a0 ^ N) P$ m) t王昕田进涛0 }% R. r( \9 j
2008年10月 目录 第1章概述1# N! Q C% z3 {6 {' m: j
1?1陶瓷材料概述1
: n- n2 D2 X" I+ i, q# l: u1?1?1陶瓷的概念及分类1( x( z6 v) s; a T
1?1?2传统陶瓷材料1$ B+ x8 v; W( M
1?1?3先进陶瓷材料3, I. @6 t/ F- j g4 x# A
1?1?4常见先进陶瓷材料简介5
* q$ E- D5 U7 M R1 M' H1?2陶瓷材料制备技术概述87 R- a7 L, Q/ G( m5 {8 t7 X
1?2?1传统陶瓷材料制备技术8; Q+ V2 D/ c" H# s* E
1?2?2先进陶瓷材料制备技术10
) o: ?5 _- w* L( ^4 p$ N1?2?3陶瓷材料的加工110 @0 Z" Q7 F/ C6 o4 Q8 B0 l
参考文献14
0 z S- `% d& K+ t第2章陶瓷制备基础知识 16; M$ ]1 `3 ~. V$ E
2?1晶体结构与晶体缺陷16
& j8 _5 A# y* s7 E2?1?1晶体学基础知识16
+ [( f0 @" A( b% O9 y2?1?2晶体结构18
$ |( k: a; p. b% c2?1?3晶体缺陷20
" L3 O) z) y' q' u# h, l3 r2?1?4晶体缺陷在先进陶瓷材料制备过程中的作用22
6 D" t1 l7 }. i2?2相图与相变22; K) c" h: S* g
2?2?1热力学基础知识22
/ j) S( `. b4 w, c) b3 C2?2?2相图23
j0 V; w2 Y; `3 f: |2?2?3相变25/ X! @) U2 \; v+ @/ c# O
2?2?4相图与相变在先进陶瓷材料制备过程中的作用27
, S. }9 g/ o9 F6 {+ T* L, B4 t2?3扩散27
1 ^3 K3 z& o/ a/ g( Y2?3?1扩散定律及其方程27
( K& v6 l$ @ H$ [3 T4 {+ u }5 {/ a2?3?2扩散机制及扩散系数 28
B; h; ]! y. ~3 d# B/ j2?3?3影响扩散的因素29
, _. s0 ?' H- k2?3?4扩散在先进陶瓷材料制备过程中的作用 30
, |9 e. U) v, d# U9 T2?4胶体化学31
# i, j+ \" E7 J9 h! |* X2?4?1胶体化学基础知识317 M- U8 Y5 `1 [5 L
2?4?2陶瓷浆料的胶体性质33
1 T! {5 x! d2 F: |7 ~2?4?3胶体化学在先进陶瓷材料制备过程中的作用346 d* @5 _: y$ h$ r6 r6 S
参考文献35. L& L2 a3 U) \3 C- Z
第3章先进陶瓷粉体制备技术36% j$ ?; M4 v, T/ d' @" ?5 ?6 i
3?1先进陶瓷粉体的特性36
7 {1 t+ p( P2 n9 I3?1?1陶瓷粉体的概念及分类36
: o/ v' h; j5 G+ ` f6 |1 q3?1?2先进陶瓷粉体的基本特性360 \- T5 F5 U% r& T; W; c$ r4 R
3?1?3纳米陶瓷粉体的特性38
+ K- B) D! a6 s' h3?2先进陶瓷粉体的表征39
& P3 A8 F. G; P- |0 g3?2?1粒度及其分布39! }, Y/ y+ k0 S0 H% c- t
3?2?2显微形貌分析44
: Z* `' b4 o8 v( P! k1 i3?2?3成分及物相分析46. I3 x+ f- T0 G; w" c V( E# z
3?3先进陶瓷粉体的制备技术48
' m& A5 D( W5 P' f- s C# p3?3?1机械法48
1 E; d4 |. I* P4 n+ v) Z3?3?2物理法50
! |0 r; j x) R3?3?3化学法52 V; ~3 h- u4 [% e
3?3?4纳米陶瓷粉体的制备技术60, [! Q2 u7 o. h( ~; ?; W- k& V
3?3?5陶瓷粉体的表面修饰66
2 B% v9 ^% C" K) [参考文献68
( p& s; y4 _/ ]3 M8 b第4章先进陶瓷固体材料制备技术70( f# O3 {! v9 m5 u5 m, z
4?1陶瓷粉体预处理70
4 e& Q+ c2 m/ D* w* n/ L' K6 g& N4?1?1粉体清洗706 W& w7 l$ l' S. ?/ |
4?1?2粉体预烧706 ^! \/ p' k/ {& {# _: O
4?1?3配料及混合71: f) s! `( v( C. o
4?1?4坯料塑化71* j0 ?- q& m: w* _ c9 F
4?1?5造粒729 @: X* c3 Z2 ]: F# q& W5 C# g
4?2固体成型73. W, e+ q' x5 e% I
4?2?1干法成型73" c, D" _0 b2 [. L, l: D0 S5 _ P
4?2?2湿法成型79
; A9 r- j4 V5 K4?2?3原位凝固成型944 }& w! u9 c5 s9 [0 d! T: s$ D
4?2?4快速无模成型103+ V1 ?4 n* n8 i& r L
4?2?5成型技术展望113$ O# T5 y) ^9 _9 A
4?3固体烧结114
8 K0 w: P- T% |0 q( I+ Y$ H4?3?1烧结基础知识114
3 N4 b8 H I T4?3?2晶粒生长与二次再结晶124
' f5 m& S0 x" v4?3?3常压烧结127
& P; K! ~2 T* C5 d7 k( D4?3?4压力烧结1293 N- H1 x; F1 N! r. E! R9 l+ H
4?3?5反应烧结130) T' o8 S) ^$ y8 t2 D; `
4?3?6气氛加压烧结132% ~& I! X; e7 N6 k) k
4?3?7等离子烧结1327 J+ A/ E8 A, I: z
4?3?8微波烧结133
2 i' ]. L) o6 k; U9 ?4?3?9自蔓延高温烧结135# C q& b" Q, K/ M, j' {% n+ t2 a+ e( w
4?3?10爆炸烧结136
* z7 ~# h2 X) z5 J; N: V参考文献137
& U6 g" g+ f2 K& _第5章先进陶瓷复合材料的制备技术140
; ?: ~8 W7 V+ f: \ J5?1概述1407 x) _7 Y9 P/ e: E N6 j( ?! C
5?1?1先进陶瓷复合材料概念及分类1400 q! a- Z0 F; r1 A; {
5?1?2先进陶瓷复合材料性能特点及应用141; C: p6 K% ?' m. U. v2 B
5?2先进陶瓷复合材料增强体的制备142$ z6 p; ^, F. V& W
5?2?1碳纤维及其预成型体的制备142
$ ?$ e1 m# z0 L1 |, U5?2?2碳化硅及氧化铝纤维的制备144
8 A( [0 ~ s* I5?2?3晶须的制备144# [. n6 s; _/ B8 J2 f; q5 t: i
5?3先进陶瓷复合材料常用制备技术145
! F- j$ N0 p' M2 \" K) e: y3 I5?3?1粉末冶金法和浆体法145) N" N7 H" p" e9 V
5?3?2溶胶?凝胶法和聚合物先驱体热解法145+ D2 J) X4 j/ w- P' A/ B2 x8 h- m
5?3?3反应烧结法和直接氧化法147
2 X) n! Z' i( J% y* o4 u5?3?4熔体浸渗法148, R% P! n! }) ?' {% m) R+ i7 L3 N
5?3?5化学气相渗透法148, G g2 _( j7 [! q& ?$ Y
5?3?6先驱体转化?活性填料法150
2 k4 ?3 V* [5 J. Y3 N5?4碳/碳复合材料制备151 X% |0 T2 Z: @; u2 U
5?4?1碳/碳复合材料制备技术151
m! a' b: M$ U2 k* l# e2 w5?4?2碳/碳复合材料的防氧化153
/ y7 U& j- v; S6 E# C4 b参考文献154
' ]' I: {0 f8 G. H* V. d1 k+ |第6章先进陶瓷多孔材料制备技术156
% R" c ^% P4 I, K) r$ x x8 z6?1概述156. ~0 x9 G5 U* t v: M
6?1?1先进陶瓷多孔材料及分类156* b( V( Z2 j$ v) s6 c/ u" D
6?1?2先进陶瓷多孔材料性能特点及应用156
* A0 |. e" S9 u# `9 J6?2先进陶瓷多孔材料制备技术158
6 U2 F# J1 B, m5 M; r3 Z& C4 z6?2?1添加造孔剂法158
3 T/ I" n. I3 E: w3 F8 K0 f6?2?2有机泡沫体浸渍法159+ h. k, L; Q: G0 v! f2 h$ z$ g! S
6?2?3发泡法161
1 L& F8 [8 D# D; w3 y6?2?4溶胶?凝胶法162 Z7 {4 o$ a4 M$ E
6?2?5其它制备技术165) J/ o! _3 ~7 r$ Q. ~
6?2?6常用多孔陶瓷材料制备技术比较1688 c* {) ?4 B5 j4 R- H3 ]6 {7 m
参考文献169) A" \- E- ]& `0 l' n! |
第7章先进陶瓷材料加工技术170
- [0 h0 Q3 x" Y+ r7?1陶瓷材料的可加工性1709 d* a5 A( v+ H2 z7 b
7?1?1陶瓷材料可加工性的影响因素170
7 H2 f8 n% W* x# {. W4 m3 v* T7?1?2陶瓷材料可加工性差的理论基础171
# \ ~5 N/ s& n3 Z7?1?3陶瓷磨削的材料去除机理172
, ]3 X2 d% @' r$ ^" r8 ~8 |7?2可加工陶瓷176
`! F7 r1 y; I' d6 ?. v5 b+ e, i7?2?1可加工陶瓷研究背景及其进展176- S) P& ]4 `% ^8 L2 Z
7?2?2可加工陶瓷的性能179
0 t( X5 W2 D7 I6 D; A% d& I. U7?2?3可加工陶瓷的可加工机理180, D& L( q ~8 J; S( f7 U
7?2?4可加工陶瓷的微观结构设计181+ S# V* g a" J3 S
7?2?5陶瓷可加工性能的表征182
: V: h' u# S1 W3 l/ Q7?3先进陶瓷材料加工技术183
& \7 Y. g) P+ s; R5 W7?3?1传统机械加工技术183
' M% z, ~+ L9 t I+ R- `( e7?3?2特殊加工技术184
+ W4 w3 B% ^* L' e7?3?3陶瓷的超精密加工技术188
, w+ G# Y- a0 H7?4先进陶瓷材料的热处理191
9 j& o) u; B) M' L5 }7?4?1先进陶瓷的退火191 ^% @1 y) ]9 P" ]: h" b$ o$ _
7?4?2先进陶瓷的化学热处理1921 q W- m; x- _9 g: U8 X
参考文献192
, o2 j: R) A% k" x# q3 J7 P |
评分
-
查看全部评分
|