QQ登录

只需一步,快速开始

登录 | 注册 | 找回密码

三维网

 找回密码
 注册

QQ登录

只需一步,快速开始

展开

通知     

查看: 1573|回复: 0
收起左侧

[书籍] Solid–Liquid Two Phase Flow《固液两相流体》08英文PDF新书

 关闭 [复制链接]
发表于 2008-7-3 09:10:30 | 显示全部楼层 |阅读模式 来自: 中国山东德州

马上注册,结识高手,享用更多资源,轻松玩转三维网社区。

您需要 登录 才可以下载或查看,没有帐号?注册

x
书名:Solid–Liquid Two Phase Flow! o, u; M# z# @& {
作者:Sümer M. Peker% k/ G& [& ?  k% V
发行:Elsevier4 }/ @. A9 k3 H  @; s" P$ k; F) K
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
" N: o' V+ Z5 Q# \1 f. lLinacre House, Jordan Hill, Oxford OX2 8DP, UK

$ u  s5 w! w1 z页数:535
1 H; d; X9 a& E( o6 F/ y! CISBN:978-0-444-52237-5/ G$ ?* n- c) s+ s
共3个压缩卷,解压后6.09M
" \5 j4 u. P% }$ ]主要内容:" q( I$ K4 I- U  \9 r( }. ^
Being an ‘underpinning technology’, fluid flow closely reflects and sometimes precedes
" S; H# W$ v# w. u  ~% C" mthe developments of the ‘core technologies’ of the time. Only in the second half of 19th0 V' j, t! E& m9 n
century that the term ‘two-phase flow’ was pronounced and added as a chapter to fluid4 a" u8 l2 n7 J$ T
mechanics and unit operations books. At that time, two-phase flow term was used predominantly# O1 H) J" s$ E6 {
to denote gas–liquid flow, which is not coincidental, as the leading technologies
" ^! ~: C7 b+ P" f# k/ z& [: @were nuclear and thermal, addressing mainly vapor–liquid systems.

+ z1 z5 A$ w/ ~目录+ {3 O  ?0 ^6 ~# O8 s
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii
& g& c+ A* s- _) gList of Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii: j% R) g+ q6 p) x) A
1 The Particulate Phase: A Voyage from the Molecule to the Granule. . . . . . . . . . . . .  1: Z9 J1 ?5 x3 Y  t
1.1 Molecular Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1; j  f2 C& \7 u$ Y
1.1.1 Attractive forces among molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
: d3 [6 Q! O6 G! R* u5 k& w1.1.2 Repulsive forces among molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
. O4 r7 R2 o+ B0 \, \, \# r% r0 I+ ?1.2 Interactions of Electrical Origin Between Particles. . . . . . . . . . . . . . . . . . . . . . . . .  69 R' q! s) G7 G/ z, d
1.2.1 Attractions between particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
; M3 z7 h7 w8 G1.2.2 Ionic interactions between charged surfaces . . . . . . . . . . . . . . . . . . . . . . . .  9
7 o5 @4 `' h$ I1.2.3 The DLVO theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
$ |4 C% |1 s1 b6 A. E4 b1.3 Interaction of Particles due to Non-DLVO Forces. . . . . . . . . . . . . . . . . . . . . . . . . .  17
- F: O& a: K& b$ u9 r! o% c1.3.1 Forces of entropic origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18. m# l) |; D' D" v
1.3.2 Forces of energetic origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
4 a; o- K: A8 ~3 z9 d" k+ A1.4 Aggregation of Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24/ G6 s4 ]3 {3 c  F+ y1 z4 L
1.4.1 Kinetics of aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26. \- E  D1 w. M' g4 H
1.4.2 Structure of aggregates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, G3 w" B. c, I/ F! K
1.4.3 Role of polymers and polyelectrolytes on the coagulation of suspensions. . 32
) d8 x: `- F) c! H1.5 Aggregation of Ferromagnetic Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
7 i; z( H9 F5 s5 K- u1.5.1 Effect of the direction of the magnetic field on the aggregate structure . . . .  38
  a! _) [( W4 F6 X5 z) a  L1.5.2 Reversibility of aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
" C: ]9 R- @1 B" d# g1.5.3 Light-induced aggregation of ferrofluids. . . . . . . . . . . . . . . . . . . . . . . . . . .  39
, n& M! @1 D7 q! s3 m  V4 M1.6 Formation of Glasses and Gels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39; x9 w! \6 _( h
1.6.1 The glassy state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  406 z$ p  a" H9 h  H0 }% x4 H
1.6.2 Formation of gels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41( ]' J  Y) u  J# y
1.7 Self-Assemblies of Surfactants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
' ^, j- `3 i8 b* S7 `, G& v  z4 Q1.7.1 Thermodynamics of self-assembly of surfactants . . . . . . . . . . . . . . . . . . . .  45- m( W* f, Z5 m2 M! `- X. z
1.7.2 Self-assemblies in solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
% x6 d& k9 r/ c1.7.3 Self-assemblies on solid surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49; X! m7 \: B5 q
1.8 Stabilization of Suspensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
- Y9 w/ _5 g5 @, r1.8.1 Stabilization by surfactants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  501 G, n  Z$ G. i% A
1.8.2 Stabilization by polymers and polyelectrolytes . . . . . . . . . . . . . . . . . . . . . .  55& I/ H# f4 T: M* A8 _' b
1.8.3 Stabilization by nanoparticles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58" ]' ^2 j: @/ a1 n; S5 e
1.9 Aggregation in Biological Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  593 C2 o7 i3 h1 T- Y/ Z. C; a
1.9.1 Aggregation behavior of blood cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59: s  Q$ R3 c' |. t* x8 O
1.9.2 Aggregation of microorganisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65; K# D* b% W% G$ |. L( u3 P
2 Non-Newtonian Behavior of Solid–Liquid Suspensions . . . . . . . . . . . . . . . . . . . . . . .  71
: {9 E+ T0 }" f/ ~/ p2.1 Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71, u0 A) {7 v& m" l2 [3 w$ C
2.1.1 Effect of viscoelasticity on flow behavior . . . . . . . . . . . . . . . . . . . . . . . . . .  723 l) Q6 e$ w7 O7 }- P, Y
2.1.2 Assessment of viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75
) N% C0 j3 E/ ]8 R2.1.3 Dynamic methods in the assessment of viscoelasticity . . . . . . . . . . . . . . . .  76
4 f. y9 I6 @& h2.2 Rheological Models of Time-Independent Non-Newtonian Fluids . . . . . . . . . . . . .  86
. \4 h* _3 H4 C5 ?# m2.2.1 Models which describe the rheological behavior with a * P5 a) Y! o" n5 _6 L. G
viscosity function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
4 N/ ]1 q0 x' a) |2.2.2 Models for fluids with a yield stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90
/ B# G0 L# v) e! f2.2.3 Models for specific end-use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  927 T' j3 d. C5 ~- t+ I
2.2.4 Significance of the terms used in the constitutive equations . . . . . . . . . . . . 94$ G# d5 l' X3 i: H
2.3 Flow of Non-Newtonian Fluids through Cylindrical Pipes . . . . . . . . . . . . . . . . . . .  95; |9 k3 j4 R9 G: [
2.3.1 Laminar flow of non-Newtonian fluids. . . . . . . . . . . . . . . . . . . . . . . . . . . .  97+ B$ o% N2 T; l2 q7 ?6 M$ t
2.3.2 Turbulent flow of non-Newtonian fluids . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
7 ?+ I- C! P" s8 \2.3.3 Flow through sudden expansions and fittings . . . . . . . . . . . . . . . . . . . . . . . 135
2 n9 H$ J* R/ ^% Q3 F+ W& F2.4 Flow through Noncylindrical Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141- ?& b0 i# D& ^* m) c8 R. @  u
2.4.1 Flow through annular channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  e8 c4 }9 i6 z5 m
2.4.2 Flow through rectangular channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
2 y+ M# V4 C0 z0 x+ D* Q- M2.4.3 Flow in microchannels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5 Q; _5 P  o9 p. L0 c* q5 O2.4.4 Flow in open channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

0 t$ I7 F( h& o  ?8 ? . . . . . . . . . .  
  V0 F' f" K3 @9 W! s8 Classification and Separation of Solid–Liquid Systems . . . . . . . . . . . . . . . . . . . . . . .  439, j6 `" n/ N6 [4 r0 n! }8 j
8.1 Classification and Separation in a Gravitational Field. . . . . . . . . . . . . . . . . . . . . . .  439% B5 @! z: f8 q2 r
8.1.1 Sedimentation as a separation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4404 b, W6 K7 A. z: _% ~* }/ s
8.1.2 Fluidization as a separation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443' T; q5 `" F6 O8 t0 |- k$ s+ w" U
8.1.3 Classification in hydrocyclones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448* Q8 ]# K  C6 S. G, [
8.2 Separation in a Magnetic Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  457
& @$ g, h- A! }/ S! N3 ^) \8.2.1 Separation of magnetic particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
8 `3 `' n+ u" d0 \' k, u( A8.2.2 Separation of nonmagnetic particles in a magnetic medium . . . . . . . . . . . . 459
7 B, x- |( O+ [% K& h! g5 u. w5 @8.3 Separations in the Microscale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4592 `( K2 M& I; x
8.3.1 Field flow fractionation techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460$ U' j6 i( u0 }- _2 l
8.3.2 Separations in flow through microfluidic bifurcations. . . . . . . . . . . . . . . . .  460
! o7 z' X' l0 P7 S( ?5 |; y6 l8.3.3 Ultrasonic separations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
, E* B3 ^  h( ]. v- X* @5 K; s8.3.4 Separations based on magnetic properties. . . . . . . . . . . . . . . . . . . . . . . . . . 465
9 I, D# f# S. c6 U2 A8.3.5 Separations based on electrical properties. . . . . . . . . . . . . . . . . . . . . . . . . . 466& u4 v. k3 U( w8 r: c
Appendix A Mathematical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  471+ G: v6 _4 y' v: T' Q7 [
Appendix B Population Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  493
6 `& K- _7 X& ~0 M. \Appendix C Tables for Use in Plug Flow in an Annulus . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5030 m( m2 w. I8 {( X+ w( w
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  509
  x7 q( L+ B# P7 E7 T' b
1.JPG

Solid–Liquid Two Phase Flow.part1.rar

1.91 MB, 下载次数: 29

Solid–Liquid Two Phase Flow.part2.rar

1.91 MB, 下载次数: 23

Solid–Liquid Two Phase Flow.part3.rar

1.04 MB, 下载次数: 24

评分

参与人数 1三维币 +15 收起 理由
云动风清 + 15 好资料,感谢对论坛的支持!

查看全部评分

发表回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Licensed Copyright © 2016-2020 http://www.3dportal.cn/ All Rights Reserved 京 ICP备13008828号

小黑屋|手机版|Archiver|三维网 ( 京ICP备2023026364号-1 )

快速回复 返回顶部 返回列表