|
马上注册,结识高手,享用更多资源,轻松玩转三维网社区。
您需要 登录 才可以下载或查看,没有帐号?注册
x
快速成形技术在陶瓷领域中的应用
' z: b Y: H0 v3 w$ F; N7 G) e关键词:快速成形技术 陶瓷6 T: E/ W b" x2 n! m
快速成形(Rapid Prototyping and Manufacturing,简称RP或RP&M)或自由实体造型(Solid Freeform Fabrication,简称SFF)是80年代中期发展起来的一种造形新技术,它将传统的“去除”加工法改变为“增加”加工法。RP技术综合了计算机辅助设计、激光、光化学和高分子聚合物等多种技术,并且随着RP技术与其它材料加工技术的结合,其应用领域不断扩大。RP技术的基本原理是,首先根据产品设计图纸或“反求法”得到一系列横截面,数控激光束按每一层的轮廓线或内部网格线对材料逐层加工并叠加,直至完成整个制件。RP技术无需机械加工或任何模具,直接从CAD模型生成复杂形状的制件,因而产品研制周期缩短,生产率提高,生产成本降低。! R2 i Q- l9 l4 K6 f
1987年,美国3D Systems公司展出第一代商用RP系统SLA-1,之后RP技术迅速发展,在许多部门都得到应用。其用途主要包括,快速成形技术制作模型对产品进行设计验证、评价、性能测试等,制作注塑模、功能材料制件,与传统制造工艺相结合制造模具和金属零件等。
b; t0 e5 t: n6 ^$ s1 RP技术种类[1~4]8 G- Z) `% _+ j& M0 S
目前比较成熟的快速成形方法有SLA,LOM,SLS,FDM,3DP等。7 S4 P! j( ?7 U% B/ k: B' s
立体光刻装置(Stereo-Lithography Apparatus, 简称SLA)是最早的RP技术实用化产品,SLA工艺如图1所示。其工艺过程是,首先通过CAD设计出三维实体模型,将模型转换为标准格式的STL文件,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制扫描器和升降台的运动;激光器产生的激光束经聚焦照射到容器的液态光敏树脂表面,使表面特定区域内的一层树脂固化后,升降台下降一定距离,这样SLA装置逐层地生产出制件。3 J" w/ x0 ~, _* `, I
图1 SLA工艺示意图 SLA技术的常用原料是热固性光敏树脂,主要用于制造多种模具、模型等,还可以通过加入其它成分用SLA原型模代替熔模精密铸造中的蜡模。SLA技术成形速度较快,精度较高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。开发收缩小、固化快、强度高的光敏材料是其发展趋势。: B/ f! O6 c: B
分层实体造型(Laminated Object Manufacturing,简称LOM)是将薄膜材料逐层激光切割成所需形状,然后叠加在一起的造形方法。LOM工艺与SLA工艺的区别在于将SLA中的光致固化的扫描运动变为LOM中的激光切割运动。/ X1 i* h% z" G1 U
LOM技术常用材料是纸、金属箔、塑料膜、陶瓷膜等,除了可以制造模具、模型外,还可以直接制造结构件或功能件。LOM技术成形速度快,制造成本低,但由于材料薄膜厚度有限制,未经处理的表面不光洁,需要进行再处理。
2 K* j/ V4 w: d5 T& h! Z' C 选择性激光烧结(Selective Laser Sintering,简称SLS)是将粉末材料用辊轮铺开成一定厚度薄层,激光扫描使一定区域的粉体烧结,再铺粉于烧结层上,如此逐层烧结得到实体零件。其技术关键是调整激光束进行粉末烧结。
; N( ?! c9 j! s4 _ SLS技术常用原料是塑料、蜡、陶瓷、金属,以及它们的复合物的粉体,用蜡可做精密铸造蜡模,用热塑性塑料可做消失模,用陶瓷可做铸造型壳、型芯和陶瓷件,用金属可做金属件。此技术成本较低,可制备复杂形状零件,但成形速度较慢,由于粉体铺层密度低导致精度较低和强度较低。- g! g& _# N: `6 W9 Z
熔融沉积成形(Fused Deposition Modeling, 简称FDM)是将线材液化后通过喷嘴逐层沉积成复杂形状制件。FDM工艺用液化器代替了激光器,其技术关键是得到低粘度、易沉积、具有可控制的稳定“路”宽的熔体。
2 R0 D9 y0 h/ \: j FDM技术所用线材包括石蜡、塑料、低熔点金属和陶瓷等,可直接制备金属件和多种模型。FDM技术成本较低,同时成形速度较慢,精度较低。0 f% l, p" J! o+ L
三维打印(Three-Dimensional Printing,简称3DP)的工作原理类似于喷墨打印机,利用喷嘴将液态粘结剂喷在预先铺好的粉层特定区域,再铺粉喷粘结剂,逐层处理后得到所需形状制件。也可以直接逐层喷陶瓷粉浆,得到所需形状,其技术关键是配制合乎要求的粘结剂。
8 @1 n) d/ ~, `8 L' p8 b Y 3DP技术的材料包括陶瓷、金属、塑料的粉料。3DP技术成本较低,成形速度较快,但粉体铺层疏松影响强度和精度。
4 r# }* L1 ?) i& W- t4 d
; D# I1 `% X. Y7 E0 m4 I- ^2 }2 RP技术生产陶瓷件
' z- f" i. y, X$ o4 F2 d RP技术由于快速逐层成形,无机械加工,无模具,因而对于难制造、难加工的复杂形状的陶瓷结构件生产具有很大的吸引力,同时也可以制造功能梯度材料,功能材料,如电容器、电路基板、薄膜热电偶、应力传感器等。下面介绍已用于制备陶瓷件的RP技术。
, `* W& M4 N5 U3 V$ y% |5 Z# v7 O2.1 LOM6 {" J, P: I: Q3 _" K
Dayton大学的Donald A. Klosterman等[5~7]应用LOM技术制备了陶瓷件、陶瓷基复合材料以及树脂基复合材料。他们的最终目标是生产高密度的、近无余量加工的陶瓷基复合材料。
{ \- b4 s) [- R, Q7 Z 第一步是生产单相陶瓷,已制备的有单相SiC和AlN陶瓷件。首先采用标准的流延工艺做出宽20cm,长1m,厚度分别为0.15mm和0.3mm的陶瓷膜,膜由60vol%陶瓷粉和粘结剂组成。研究了三种粉末体系:粗SiC(30μm)粉+石墨粉;粗SiC(30μm)+细SiC(2μm)粉+石墨粉;可烧结AlN(2μm)粉。由于陶瓷膜短不能形成连续卷,并且强度低而不足以承受进给运动,因而膜的安放依赖于手工操作。LOM工艺生成的坯体软而易变形,因而采用部分脱脂工艺硬化坯体,使之易于搬运。部分脱脂工艺需要严格控制加热,以使增塑剂挥发,同时保持原有粘结力。烧结之前,根据热分析数据制定完全脱脂工艺。烧结工艺采用液态或气态渗Si反应烧结,游离Si与事先加入的C反应生成SiC,由于SiC含量增多而使制件无明显收缩。AlN陶瓷件的情况没有说明,其主要问题也是烧结收缩和形变。SiC件的室温四点抗弯强度值为160MPa,随着叠层技术的改善,这个数值得到提高。
* `+ @9 ^. _1 L0 s LOM系统的改进包括在切割区上方供给惰性气体以避免C或N的氧化,重新设计进给机构以减少造价较高的陶瓷膜的浪费且实现自动化。
+ }5 Y' a, k4 { o+ @5 F 因为层厚的限制,坯体表面是不光滑的,因而需要进行边界磨光。边界处理可以采用交叉网格线切割和表面抛光两种方法,表面抛光法的切屑少,表面更光滑。两种方法都需要对软件进行调整。: ~- F6 C9 w8 v) {
研究开始阶段采用热辊提供压力和热源来增加层间结合,热辊温度高达120~180℃使粘结剂熔化实现粘结。由于存在温度梯度,层间存在不连续粘结而导致裂纹。由于层间裂纹和气孔,导致强度较低。通过喷胶可以提高层间结合力,降低热辊温度,其缺点是增加了边界磨光的难度,需要更严格的脱脂工艺。另外,成形后加压处理也可改善层间结合。通过工艺改进,SiC件的四点抗弯强度达200~275MPa。
0 ^1 L' x2 T4 {- {9 k3 I! ` 为达到制备陶瓷基复合材料的最终目标,采用Al2O3/SiCw,Al2O3/SiCf,SiC/SiCf作为研究体系。遇到的问题首先是晶须或纤维的均匀分布问题。解决方法是采用分层方法,即单相SiC膜与SiCf/树脂预制膜交替叠加,树脂起到提供强度和碳源的双重作用。这种方法避免了纤维与粉粒磨擦造成的损伤,同时可提高纤维在产品中的体积含量。预制膜厚为0.25mm,体积含量50%。
' _- P8 C {5 d Lone Peak工程公司的E.Alair Griffin等[8]采用LOM技术制备了ZrO2和Al2O3陶瓷件,选择原则是ZrO2马氏体相变对产品有增强作用。膜厚为116μm和58μm,陶瓷膜材料体系为12mol%CeO2-ZrO2和Ce-ZrO2/Al2O3。多层复合体包括单相Ce-ZrO2件,Ce-ZrO2和Al2O3/Ce-ZrO2交错叠层件。烧结后产品中存在<1%气孔,坯体和烧结体内无粗大裂纹缺陷,烧结层厚由原来的116μm和58μm变为85μm和44μmm。在Al2O3/Ce-ZrO2层内,Al2O3以约5μm的粒度均匀分布;由于制备Ce-ZrO2粉浆时使用Al2O3磨球,因而Ce-ZrO2层内也存在少量Al2O3。层间结合也很好,各相分布均匀,界面无裂纹。单相陶瓷件强度为400MPa,复合陶瓷件为500MPa。Ce-ZrO2层硬度为9GPa,Al2O3/Ce-ZrO2层硬度为15GPa,界面附近硬度为11.5GPa。
: d/ g8 T- c7 M; ]6 y& } 该公司的Curtis Griffin[9]等采用LOM技术制备了Al2O3试样和零件,Al2O3膜尺寸为10cm×15cm×0.015mm。同时,使用相同的材料采取干压成形法制成试样以便进行对比。通过比较表明,两种烧结法制成的零件的烧结密度相当,微观组织类似,但坯体密度、脱脂失重量及收缩量不同,这与两种方法粘结剂含量不同有关,这也导致LOM成形件开放气孔率较高。测试表明,机械性能与成形方法和测试方向无关,微观组织也很难鉴别层间界线。强度与商用产品相当,硬度则高于商用产品,断裂韧性为商用产品的下限,但这种不同可能是由于测试手段不同造成的,例如硬度采用维氏硬度,而商用产品采用努普硬度。结果表明,LOM成形件性能与干压法相当,优点是效率高和可制作复杂件。 |
|