|

楼主 |
发表于 2007-1-13 21:44:31
|
显示全部楼层
来自: 中国上海
生物能的开发和利用具有巨大的潜力。下面的技术手段目前看来是最有前途: + Q$ y0 g- E! k4 y
直接燃烧生物质来产生热能、蒸汽或电能。 ( X, T" h- _8 |0 S* W' G
利用能源作物生产液体燃料。目前具有发展潜力的能源作物,包括:快速成长作物树木、糖与淀粉作物(供制造乙醇)、含有碳氧化的合作物、草本作物、水生植物。 , a* U: ^) o, r( g3 e) a, J7 k( V
生产木炭和炭。 - G7 l# Q: u; T1 G* f) Y
生物质(热解)气化后用于电力生产,如集成式生物质气化器和喷气式蒸汽燃气轮机(BIG/STIG)联合发电装置。
/ x7 W( B3 d+ x; Q! j" L对农业废弃物、粪便、污水或城市固体废物等进行厌氧消化,以生产沼气和避免用错误的方法处置这些物质,以免引起环境危害。
; A) Q# V1 E( j- X- {(3)生物质能利用技术 , f5 N8 v+ a. @; L- ?- }9 R$ r1 f) h
生物质能是绿色植物 通过绿素将太阳能转化为化学能而储存在生物质内部的能量。生物质能通常包括木材和森林工业废弃物、农业废弃物、水生植物、油料植物、城市与工业有机废弃物和动物粪便等。目前发展的生物质能利用技术有:
* S. [2 m3 J5 j+ K1)热化学转化技术。是将固体生物质转换成可燃气体、焦油、木炭等品位高的能源产品。
4 o; T+ X0 \/ z, A2 d: g Z; s* N2)生物化学转换技术。主要指生物质在微生物的发酵作用下生成沼气、酒精等能源产品。沼气是有机物质在一定温度、温度、酸咸度和厌氧条件下经各种微生物发酵及分解作用而产生的一种混合可燃 气体。
( |! l# G% N3 V$ \) _3)生物质压块细密成型技术。是把粉碎烘干的生物质加入成型挤压机,在一定温度和压力下,形成较高密度的固体燃料,密度约为1.2-1.3克/厘米3,热值在20 焦/公斤左右。 $ F& b) p) Q9 |2 Q. L9 D) p/ R2 t
4)化学转换技术。
/ c: x1 Q% C+ i n+ Z! q 1990年,我国消费生物质能约2.64亿吨标准煤,大部分是直接燃烧的.目前,我国已研制成功小型气化炉,气化率达70%以上。高效生物质燃烧炉,热效率达85%。
5 o |- F; h/ M( n/ C 海洋能指依附在海水中的可再生能源,海洋通过各种物理过程接收、储存和散发能量,这些能量以潮汐、波浪、温度差、盐度梯度、海流等形式存在于海洋之中。潮汐与潮流能来源于月球、太阳引力,其他海洋能均来源于太阳辐射,海洋面积占地球总面积的71%,太阳到达地球的能量,大部分落在海洋上空和海水中,部分转化为各种形式的海洋能。海水温差能是热能,低纬度的海面水温较高,与深层冷水存在温度差,而储存着温差热能,其能量与温差的大小和水量成正比;潮汐、潮流,海流、波浪能都是机械能,潮汐能是地球旋转所产生的能量通过太阳和月亮的引力作用而传递给海洋的,并由长周期波储存的能量,潮汐的能量与潮差大小和潮量成正比;潮流、海流的能量与流速平方和通流量成正比;波浪能是一种在风的作用下产生的,并以位能和动能的形式由短周期波储存的机械能,波浪的能量与波高的平方和波动水域面积成正比;河口水域的海水盐度差能是化学能,入海径流的淡水与海洋盐水间有盐度差,若隔以半透膜,淡水向海水一侧渗透可产生渗透压力,其能量与压力差和渗透流量成正比。因此各种能量涉及的物理过程开发技术及开发利用程度等方面存在很大的差异。
2 n4 @8 S$ L* E% g+ e: A 这些不同形式的能量有的已被人类利用,有的已列入开发利用计划,但人们对海洋能的开发利用程度至今仍十分低。尽管这些海洋能资源之间存在着各种差异,但是也有着一些相同的特征。每种海洋能资源都具有相当大的能量通量:潮汐能和盐度梯度能大约为2TW;波浪能也在此量级上;而海洋热能至少要比此大两个数量级。但是这些能量分散在广阔的地理区域,因此实际上它们的能流密度相当低,而且这些资源中的大部分均蕴藏在远离用电中心区的海域。因此只能有一小部分海洋能资源能够得以开发利用。
9 W7 V9 e" k. s全球海洋能的可再生量很大。根据联合国教科文组织1981年出版物的估计数字,五种海洋能理论上可再生的总量为766亿千瓦。其中温差能为400亿千瓦,盐差能为300亿千瓦,潮汐和波浪能各为30亿千瓦,海流能为6亿千瓦。但如上所述是难以实现把上述全部能量取出,设想只能利用较强的海流、潮汐和波浪;利用大降雨量地域的盐度差,而温差利用则受热机卡诺效率的限制。因此,估计技术上允许利用功率为64亿千瓦,其中盐差能30亿千瓦,温差能20亿千瓦,波浪能10亿千瓦,海流能3亿千瓦,潮汐能1亿千瓦(估计数字)。
1 l7 X/ D4 {! s2 v# t 海洋能的强度较常规能源为低。海水温差小,海面与500~1000米深层水之间的较大温差仅为20℃左右;潮汐、波浪水位差小,较大潮差仅7—10米,较大波高仅3米;潮流、海流速度小,较大流速仅4~7节。即使这样,在可再生能源中,海洋能仍具有可观的能流密度。以波浪能为例, 每米海岸线平均波功率在最丰富的海域是50千瓦,一般的有5~6千瓦;后者相当于太阳能流密度1千瓦/米2)。又如潮流能,最高流速为3米/秒的舟山群岛潮流,在一个潮流周期的平均潮流功率达4.5千瓦/米2。 海洋能作为自然能源是随时变化着的。但海洋是个庞大的蓄能库,将太阳能以及派生的风能等以热能、机械能等形式蓄在海水里,不象在陆地和空中那样容易散失。海水温差、盐度差和海流都是较稳定的,24小时不间断,昼夜波动小,只稍有季节性的变化。潮汐、潮流则作恒定的周期性变化,对大潮、小潮、涨潮、落潮、潮位、潮速、方向都可以准确预测。海浪是海洋中最不稳定的,有季节性、周期性,而且相邻周期也是变化的。但海浪是风浪和涌浪的总和,而涌浪源自辽阔海域持续时日的风能,不象当地太阳和风那样容易骤起骤止和受局部气象的影响。 . N+ {: k5 x8 f5 `8 o, a8 k7 ~ c
(4)波浪能和潮汐能
) C, ^0 h' g) ?: x! K 这两项海洋能源我国约有4-5亿千瓦,已建成1280千瓦时平潭幸福洋潮汐电站。我国波力发电极有特色,在基础研究方面已进入世界前沿,在实用上已有10千瓦级的岸式或漂浮式波力发电装置,并装备了航标灯。海洋能的开发应着重两个方面,其一是基础研究,如海洋能的收集与聚能,最佳转换方式和转换机械,随机、间断、不稳定转换技术等;其二是多能互补,与海湾、海岛、入海口其他新能源多能并举多能互补。
0 ^$ p) M0 j: M6 [[四]:氢能:
1 r5 m, }0 [ U. Z0 A) _5 P, J 二次能源是联系一次能源和能源用户的中间纽带。二次能源又可分为“过程性能源”和“合能体能源”。当今电能就是应用最广的“过程性能源”;柴油、汽油则是应用最广的“合能体能源”。过程性能源和含能体能源是不能互相替代的,各有自己的应用范围。作为二次能源的电能,可从各种一次能源中生产出来,例如煤炭、石油、天然气、太阳能、风能、水力、潮汐能、地热能、核燃料等均可直接生产电能。而作为二次能源的汽油和柴油等则不然,生产它们几乎完全依靠化石燃料。随着化石燃料耗量的日益增加,其储量日益减少,终有一天这些资源将要枯竭,这就迫切需要寻找一种不依赖化石燃料的、储量丰富的新的含能体能源。氢能正是一种理想的新的含能体能源。
: s7 L1 c9 M) P( {$ c% e 中国对氢能的研究与发展可以追溯到60年代初,中国科学家为发展本国的航天事业,对作为火箭燃料的液氢的生产,H2/02燃料电池的研制与开发进行了大量而有效的工作。将氢作为能源载体和新的能源系统进行开发,则是7O年代的事。氢能的开发利用首先必须解决氢源问题,大量廉价氢的生产是实现氢能利用的根本。氢是一种高密度能源,一般说来,生产氢要消耗大量的能量。因此,必须寻找一种低能耗、高效率制氢方法。安全、高效、高密度、低成本的储氢技术,是将氢能利用推向实用化、规模化的关键。
& b7 r, [; X) E+ Q2 i
7 I, o! E# C! V) \, t* D* \ 多年来,我国氢能领域的专家和科学工作者在国家经费支持不多的困难条件下,在制氢、储氢和氢能利用等方面,仍然取得了不少的进展和成绩。但是,由于我国在氢能方面投入资金数量过少,与实际需求相差甚远,虽在单项技术的研究方面有所成就,甚至有的达到了世界先进水平,并且在储氢合金材料方面已实现批量生产,但氢能系统技术的总体水平,尚与发达国家有一定差距。
T. m. p; k6 h2 C" R; S1 A6 `" `
我国实施可持续发展战略,积极推动包括氢能在内的洁净能源的开发和利用。近年来,在氢能领域取得了多方面的进展。我国已初步形成一支由高等院校、中国科学院及石油化工等部门为主的从事氢能研究、开发和利用的专业队伍。在国家自然科学基金委员会、国家科学技术部、中国科学院和中国石油天然气集团公司的支持下,这支队伍承担着氢能方面的国家自然科学基金基础研究项目、国家“ 8 6 3”高技术研究项目、国家重点科技攻关项目及中国科学院重大项目等。科研人员在制氢技术、储氢材料和氢能利用等方面进行了开创性工作,拥有一批氢能领域的知识产权,其中有些研究工作已达到国际先进水平。 |
|