QQ登录

只需一步,快速开始

登录 | 注册 | 找回密码

三维网

 找回密码
 注册

QQ登录

只需一步,快速开始

展开

通知     

全站
4天前
查看: 894|回复: 17
收起左侧

[求助] 请教这个图怎么画。谢谢!

[复制链接]
发表于 2025-6-23 16:42:25 | 显示全部楼层 |阅读模式 来自: 中国上海
1三维币
请教这个图怎么画。谢谢!
/ N6 c$ C; n4 ?+ _4 i
微信图片_20250623163833.jpg

最佳答案

查看完整内容

若已知正三角形顶点的参数,则可按如下作法,【楼上回帖可看着是本贴的特殊情况(h=a/2)】:

评分

参与人数 1三维币 +10 收起 理由
2005llnn + 10 鼓励有意义的求助或讨论的主题。

查看全部评分

发表于 2025-6-23 16:42:26 | 显示全部楼层 来自: 中国湖南
若已知正三角形顶点的参数,则可按如下作法,【楼上回帖可看着是本贴的特殊情况(h=a/2)】:( m# s" M$ V3 |/ S; A! U
2025-06-26_144348.png / [" R6 ~1 g6 u3 @0 ^

1 V) b0 X& H7 h* _- m: p0 a% _; G$ e9 b2 m( I) L. U

点评

拜服!  详情 回复 发表于 2025-6-26 16:09

评分

参与人数 1三维币 +20 收起 理由
2005llnn + 20 感谢您解答了求助的问题。

查看全部评分

发表于 2025-6-24 11:12:57 | 显示全部楼层 来自: 中国湖南
1.正六边形;2.椭圆;3.圆周阵列;4.正三角形。
( M" D$ Z3 [  ]$ g) U  e
2025.06.24.jpg

评分

参与人数 1三维币 +5 收起 理由
2005llnn + 5 鼓励积极应答和参与的回帖。

查看全部评分

发表于 2025-6-24 23:01:45 | 显示全部楼层 来自: 中国重庆
厉害哦2 O- s+ m5 w" w9 s4 E9 `0 I4 C/ D2 W
 楼主| 发表于 2025-6-25 13:05:01 | 显示全部楼层 来自: 中国上海
TKG-09 发表于 2025-6-24 11:12
2 k* m/ x& s' F& ^, d% m: p1.正六边形;2.椭圆;3.圆周阵列;4.正三角形。

9 `& y2 q7 N# ?3 B" a3 c# v椭圆的宽度怎么确定的?

点评

这要看你的需要,比如给定数值或约束等边三角形的边长。  发表于 2025-6-25 15:22
 楼主| 发表于 2025-6-25 20:32:03 | 显示全部楼层 来自: 中国上海
lxgstar 发表于 2025-6-25 13:058 f5 p2 D8 _4 P# p! T; b: U
椭圆的宽度怎么确定的?

; S3 c$ ^0 D8 E/ P! j7 s应该是三角形的端点在中心线的四分之一。不是随意画的。题很难,你再想想。

点评

若如你所说,可如下操作: [attachimg]2364689[/attachimg]  详情 回复 发表于 2025-6-26 11:21
发表于 2025-6-26 10:40:45 | 显示全部楼层 来自: 中国北京
画图结果及步骤,您看是否合理9 ~. x) t4 C) X3 E
画图结果及步骤.jpg
, }! g+ n1 f0 b8 k

评分

参与人数 1三维币 +10 收起 理由
2005llnn + 10 鼓励积极应答和参与的回帖。

查看全部评分

发表于 2025-6-26 11:21:17 | 显示全部楼层 来自: 中国湖南
lxgstar 发表于 2025-6-25 20:32) ?3 d4 F' |. M$ S* I0 J3 J$ X
应该是三角形的端点在中心线的四分之一。不是随意画的。题很难,你再想想。
9 W. m$ N6 Q0 m5 q/ D* f. g) I5 i! F* `
若如你所说,可如下操作:
+ b( z2 c2 U9 i' J 2025-06-26_111706.png ( \  X. U( R7 L, ?: U) j+ L0 G

评分

参与人数 1三维币 +10 收起 理由
2005llnn + 10 鼓励积极应答和参与的回帖。

查看全部评分

发表于 2025-6-26 16:09:52 | 显示全部楼层 来自: 中国北京
gongwen0519 发表于 2025-6-26 14:49
: c# z3 s) w/ M, M若已知正三角形顶点的参数,则可按如下作法,【楼上回帖可看着是本贴的特殊情况(h=a/2)】:
  N0 m) a8 Q, H/ b- ]/ R
拜服!
 楼主| 发表于 2025-7-1 07:26:00 | 显示全部楼层 来自: 中国上海
gongwen0519 发表于 2025-6-26 14:49
+ E  [) u5 D& k+ q) @若已知正三角形顶点的参数,则可按如下作法,【楼上回帖可看着是本贴的特殊情况(h=a/2)】:

- x2 q3 e. m4 B& m太厉害了!看都看不懂。请问有这样的书或者教程吗?想学习一下。谢谢!

点评

没有啥太多的技术含量,就是利用解析几何求出以六边形中心为旋转中心、逆时针或顺时针旋转60°新的椭圆方程(长半轴a为已知的,短半轴b待求),由于新椭圆与其纵对称轴的交点距离h是“已知”的,从而解得椭圆的短半  详情 回复 发表于 2025-7-1 17:10
发表于 2025-7-1 17:10:59 | 显示全部楼层 来自: 中国湖南
lxgstar 发表于 2025-7-1 07:269 K% q9 F% J2 e4 q% H: H
太厉害了!看都看不懂。请问有这样的书或者教程吗?想学习一下。谢谢!

9 h6 r; g3 _9 d没有啥太多的技术含量,就是利用解析几何求出以六边形中心为旋转中心、逆时针或顺时针旋转60°新的椭圆方程(长半轴a为已知的,短半轴b待求),由于新椭圆与其纵对称轴的交点距离h是“已知”的,从而解得椭圆的短半轴b的长度。而短半轴的长度表达式刚好是符合相交弦定理的四个项(三个已知量、一个未知量b),故用三点共圆的几何中尺规作图的方法得到第四项——短半轴b的长度,仅此而已!
 楼主| 发表于 2025-7-2 09:23:28 | 显示全部楼层 来自: 中国上海
gongwen0519 发表于 2025-7-1 17:10
% Z* i# y1 h7 [7 b4 n没有啥太多的技术含量,就是利用解析几何求出以六边形中心为旋转中心、逆时针或顺时针旋转60°新的椭圆方 ...

  n8 r9 Y1 Q) l0 S4 d# }真心佩服!一是谦虚,二是热心(辛苦打字这么多详细讲解)。
 楼主| 发表于 2025-7-3 16:23:53 | 显示全部楼层 来自: 中国上海
lxgstar 发表于 2025-7-2 09:238 W" j+ z6 |. n8 A+ P/ \3 ]# @
真心佩服!一是谦虚,二是热心(辛苦打字这么多详细讲解)。
* e$ E) V- L  L, X8 W
请教这个图怎么画,帮忙说明详细解法。谢谢!
* V/ |9 o7 U4 y3 O9 K9 \
2.jpg

点评

请另外发表主题  发表于 2025-7-3 17:43
 楼主| 发表于 2025-7-3 16:51:33 | 显示全部楼层 来自: 中国上海
gongwen0519 发表于 2025-6-23 16:42' `# K+ ]3 \; S% B3 K$ p# I
若已知正三角形顶点的参数,则可按如下作法,【楼上回帖可看着是本贴的特殊情况(h=a/2)】:

/ a* A' }$ h0 c请教一下,红颜色写的原理是什么原理?谢谢!

点评

楼主这是锲而不舍、要打破砂锅璺到底啊,呵呵。 [attachimg]2364722[/attachimg]  详情 回复 发表于 2025-7-4 19:14
发表于 2025-7-4 19:14:55 | 显示全部楼层 来自: 中国湖南
lxgstar 发表于 2025-7-3 16:51# O+ j/ O3 m) y  {5 U! ?
请教一下,红颜色写的原理是什么原理?谢谢!
. O; n9 ?, P9 @" t" B- T
楼主这是锲而不舍、要打破砂锅到底啊,呵呵。1 M! b% [* f+ v: q
2025-07-04_191042.png

评分

参与人数 1三维币 +10 收起 理由
2005llnn + 10 鼓励积极应答和参与的回帖。

查看全部评分

 楼主| 发表于 2025-7-5 09:38:36 | 显示全部楼层 来自: 中国上海
gongwen0519 发表于 2025-7-4 19:14( `& h7 {( L4 I5 b& a
楼主这是锲而不舍、要打破砂锅璺到底啊,呵呵。

8 ~. z4 Z5 Z) I  R* ?( i8 b* M; l2 }' I厉害!感谢!
发表回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Licensed Copyright © 2016-2020 http://www.3dportal.cn/ All Rights Reserved 京 ICP备13008828号

小黑屋|手机版|Archiver|三维网 ( 京ICP备2023026364号-1 )

快速回复 返回顶部 返回列表